
 

 

 

 

 

 

 

 

Managing AI use in telecom infrastructures 

Advice to the supervisory body on establishing risk-based AI su-

pervision 

Commissioned by: 

Dutch Radiocommunications Agency 

 

Project: 

2019.166 

 

Publication no.: 

2019.166.2004 v1.2.6 

 

Date: 

Utrecht, 17 June 2020 

 

Authors:  

ir. Tommy van der Vorst 

ir. Nick Jelicic 

ir. Jan van Rees 

prof. dr. ir. ing. Rudi Bekkers 

ir. ing. Reg Brennenraedts MBA 

Roma Bakhyshov MSc 





 

Dialogic innovation ● interaction 3 

Management summary 

Telecom infrastructures are of vital importance to society. More and more applications de-

pend on well-functioning, reliable and always available telecom services. The Dutch 

Radiocommunications Agency (Agentschap Telecom) oversees these in the Netherlands. The 

emergence of Artificial Intelligence (AI) applications has not only fundamentally changed the 

nature of the telecom sector but also the risks. In order to safeguard the proper functioning 

of the telecom infrastructure, adjustments are required in the relevant knowledge and in the 

approach to supervision policy. This report provides insight into how AI applications impact 

and endanger the telecom landscape and suggests how the Radiocommunications Agency 

can continue to maintain society’s trust in the telecom infrastructure. The three methods 

used in this study are: literature research, interviews and sessions with experts.  

Responses to the research questions 

What are the current and future risks of applying AI in the telecom sector? 

Bearing in mind recent developments, a relevant description of AI is: using algorithms based 

on deep learning, and learning assisted by big data, to automate tasks that could formerly 

only be undertaken (properly) by humans. AI is expected to play an increasingly central role 

in telecom networks. 

AI applications have specific characteristics that can pose risks for telecom infrastructures 

(the application level). Various AI applications interact with each other, with people, ‘normal’ 

automation and possibly the outside world. It is therefore important to assess how AI is 

applied in the telecom sector at a systemic level; that is to say looking at the effects and 

risks for the entire chain rather than AI applications in isolation. In particular, they include 

the ultimate use of these applications based on telecom infrastructures. 

 

At application level, the extent of autonomous learning and operations, as well as the un-

predictability, action framework and sphere of influence of AI applications determine the 

probability and impact of the additional risks. On top of the entire lifecycle of an AI 
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application, including planning, data collection, training, testing, validation and operations, 

are notwithstanding the conventional risks relating to information security.  

Although AI applications introduce new (types of) risks, ultimately they can add specific value 

to the process of mitigating risk. 

How can the Dutch Radiocommunications Agency as supervisory and implementing 

organization mitigate these risks? 

We recommend starting with tools at a systemic level. The Dutch Radiocommunications 

Agency could mitigate the risks of AI applications in the telecom sector by providing infor-

mation and raising awareness, stipulating transparency, facilitating risk analysis and 

mitigation, as well as developing criteria and setting process requirements. There are specific 

tools for dealing with certain AI risk factors. At application level, more specific tools could be 

implemented: certification, auditing and maintaining particular types or aspects of AI could 

play a role. In a wider sense, there should be a social debate about the desirable level of 

telecom infrastructures’ provision. 

What does the use of AI look like now and in the coming five years for the telecom 

sector and other sectors that use digital connectivity?  

Most of the current AI applications focus on improving specific parameters. These are strictly 

defined applications such as optimising the parameters of a radio signal, power management 

or routing traffic through a network.  

Looking at the coming five years, we see AI applications becoming more and more advanced. 

Several suppliers of telecom equipment share the view that AI will control the majority of 

functions in telecom networks. Although it is questionable whether this will be implemented 

(entirely) in five years, their vision is definitely one we can expect. 

How do we weigh up the risks to the various interrelated aspects in a risk model 

for digital connectivity?  

Certain characteristics of AI applications can pose additional risks for telecom infrastructures. 

These characteristics relate to the following aspects of AI: 

• The extent of autonomous learning and implementation of AI. If this extent is 

considerable, the likelihood of risk events increases. A significant parameter is whether 

the AI application is controlled by people or by rules. 

• The extent of the AI application’s predictability. If the models are non-deterministic 

or highly non-linear, it is more complicated to assess whether an application will work 

well in all situations. One influential factor is the type of data used and if it can be ma-

nipulated. 

• The AI application’s action framework. If the AI application has a highly limited 

effect on telecom infrastructures, this restricts the impact of a risk event. An application 

with a wide operating framework has a potentially greater impact. 

• The AI application’s sphere of influence. An application operating at a central level 

and controlling a telecom infrastructure is more prone to risk than an application that 

optimises a specific parameter at a low level. 
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The diagram below is an overview of the relevant aspects and their weighting. The scores 

can be combined under the “application level”. 

 

Considering the risks of AI applications in isolation paints a limited picture of the societal 

risks (as well as advantages) of implementing AI in telecom infrastructures. At the systemic 

level, the following factors affect risks: 

• Interaction between AI applications and other systems.  

• Replacing humans with AI. Having people carry out tasks involves risks, and these 

can be higher or lower with an AI application. This study does not chart the risks involved 

with human activities in telecom infrastructures. The model we present can be used to 

assess the risks of substituting with AI in order to inform the decision whether or not to 

implement a human-replacement AI application. 

• Implement AI applications to mitigate risk. At a systemic level, AI applications can 

contribute to lowering the level of risk, for example through faster detection of problems 

or attacks, and by helping to find causes and solutions. 

• Cyber (in)security of AI applications. AI applications are of course also subject to 

cyber threats and associated security risks. These risks may increase, because training 

AI applications involves bringing together large amounts of (sometimes sensitive) data. 
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1 Introduction 

1.1 Background 

Artificial Intelligence (AI) has been clearly advancing since around 2010. Although the con-

cept was known and applied from the 1940s already, advances in computing power, storage 

capacity and telecommunications in recent decades have paved the way for novel potential 

uses. New algorithms based on deep learning use data to learn and perform tasks that for-

merly could only be done by humans. As such automated systems can process an 

incomparably greater amount of data than human beings, they open up new opportunities 

but also new problems: the systems are more complicated to analyse and for people to 

understand. Applying AI thus poses several social and ethical issues.  

AI is already applied in a wide range of sectors including telecoms. These telecom infrastruc-

tures are vitally important for society. More and more applications depend on efficient, 

reliable and always available telecom services. In this study we consider the potential risks 

associated with using AI in telecom infrastructures. 

1.2 Research questions 

This study answers the following question: 

What risks are involved in the current and future application of AI in the telecom 

sector, and how can the Dutch Radiocommunications Agency mitigate these risks? 

We also attempt to answer the following sub-questions: 

1. What does the application of AI look like now in the telecom sector and other sectors 

that make use of digital connectivity?  

2. What developments are envisioned in the coming five years1 for applying AI in the pro-

visioning and use of digital connectivity? 

3. What are the risks regarding availability, authenticity, integrity, trust, transparency and 

predictability in the various sectors as a result of the current and future use of AI? How 

do we weigh up the risks to the various interrelated aspects in a risk model for digital 

connectivity? 

4. How can the Dutch Radiocommunications Agency as supervisory body and implementing 

organization mitigate these risks? 

1.3 Approach 

Three methods were used to answer the study questions: a literature review, interviews and 

validation sessions with experts. The literature was especially helpful for questions 2 and 3. 

Reviewing the literature can show what kind of AI applications are possible, although these 

are not necessarily used in the Dutch telecom sector. 

To explore future AI developments, this study looked into scientific research on AI in the 

telecom sector. This helped to determine which lines of research could later be translated to 

 

1 A five-year time horizon seems rather short for an investigation like this. Nevertheless, we note that 

developments in the AI field, within and beyond telecoms, are in full swing. Looking back to five years 

ago, it would have been quite a challenge at that time to predict the status of AI today. 
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specific research by providers. We also looked at providers’ white papers and road maps to 

identify future innovations. Similarly, we identified mitigation strategies for AI risks. 

The interviews provided additional information relating to all the study questions. By inter-

viewing telecom operators, it was easier for us to find out which telecom networks in the 

Netherlands are actually applying AI now and will do so in the near future. We spoke with 

suppliers of network equipment to hear more about research and development trends. In 

this way we were able to chart developments as well as supply and demand. 

1.4 Reader guide 

We start by describing in section 2 the AI developments we are currently witnessing in the 

telecom sector. We discuss what AI means for the sector at this time and for the coming five 

years: what AI applications do we anticipate in the telecom sector, what opportunities will 

they present and what risks generally go hand in hand with using AI? In section 3 we present 

a model for assessing the risks of AI applications specifically in telecom infrastructures. Sec-

tion 4 looks at the role the Dutch Radiocommunications Agency can fulfil in mitigating the 

risks of AI applications in telecom infrastructures. Finally, we answer the research questions 

in section 5. 
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2 The rise of AI in telecoms 

We start this section by defining Artificial Intelligence: what is it and why is it relevant in the 

context of risk? We then look at the current and future application of AI in telecom infra-

structures. 

2.1 What is AI? 

The term AI has been around since the 1940s. As it has taken on another meaning over the 

years, for this study we define AI as follows: 

Artificial Intelligence or AI is the use of algorithms based on deep learning, taught 

using large amounts of data, to automate tasks that could previously only be per-

formed (properly) by humans, or to a limited extent by traditional automation.  

We have chosen a working definition tailored to the framework of this research, not a nor-

mative definition. If we take a broader look at human tasks now being done by machines, 

many things such as a pocket calculator come under the category of “artificial intelligence”. 

However, the research question relates specifically to a (perceived) new “wave” of AI appli-

cations in the telecom sector. These applications form a new generation of AI, typically using 

deep learning algorithms, huge computing power, and large amounts of data. In light of this 

combination of ingredients, it is essential we consider the risks. As we will explain, they lead 

to systems that are even more complicated to understand and to control.2 We start by un-

derpinning this definition in the historical context.  

2.1.1 History of AI 

The history of AI goes back further than many would suspect: the dream of automating 

human behaviour and reasoning can be traced to ancient times. Greek mythology describes 

the giant bronze automat Talos, ingeniously created to protect the island of Crete from pi-

rates. We find AI ideas in the medieval legends about the Golem of Prague protecting Jews. 

[1] Modern concepts of AI stem from the rise of the computer, with key figures like Turing, 

Walters and Minsky. 

The term “artificial intelligence” was introduced in 1956 by scientist John McCarthy. [2] Since 

then, the scientific field has seen a number of cycles: highs with a great deal of AI hype, 

followed by lows, with disappointment and criticism (the so-called AI winter). So far there 

have been three major revivals and two relapses. The first revival of the term took place 

around the 1950s and 1960s, driven by pioneers at MIT and Stanford. The 1970s, however, 

saw severe cuts in research budgets. It appeared that AI could not for example translate 

Russian texts into English – an application in demand and expected AI could fulfil at that 

time. The classic example is how AI translated the Russian equivalent expression “the spirit 

is willing, but the body is weak” as “the vodka is good, but the meat is spoiled”. [3] 

In the 1980s, Japan advanced its industry by firmly committing to AI. The United States and 

the United Kingdom soon followed suit. The emphasis in this period was on expert systems 

that emulated specific human actions. The intelligence was still programmed entirely by hand 

 

2 It is conceivable that our study findings also apply to AI uses that fall (just) outside this definition. For 

example, some of the risks found in Chapter 3 apply to self-learning systems, even though these are 

not based on deep learning. 
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and the system could not learn new tasks without humans programming the new rules. 

These systems are best described as a pre-programmed “decision tree” systematically run-

ning software. Figure 2 is an example of such a decision tree (an expert system would of 

course have a much larger “tree” to facilitate more complex decisions). 

 

Figure 1 Overview of the history of Artificial Intelligence showing its three distinctive “waves” 

Expert systems are usually complicated to devise. They require a combination of domain 

knowledge and programming know-how in order to develop software powerful enough to 

make “human” decisions. Despite the considerable hype surrounding expert systems, the 

high expectations have not been met. In the 1990s, the focus on AI dwindled. Nevertheless, 

expert systems have been adopted successfully to automate decisions, also in the telecom 

sector. [4] 

Around 2011, AI experienced a revival thanks to the input of researchers like Andrew Ng, 

[5] Geoffrey Hinton [6] and Yann LeCun. [7] They developed deep learning – techniques that 

can make headway with the intelligence of algorithms. AI applications that up until then were 

deemed impossible, suddenly became achievable. One example is AlphaGo, developed by 

Google, which in 2016 beat world champion Lee Sedol in the game Go, even though up till 

then people assumed Go could only be played at a high level with human intelligence (and 

intuition). The game Go has 10,172 potential board positions [8] and 361 potential moves in 

each turn – many times more than the number of board positions and moves in the game of 

chess. This number of moves is too high for determining an optimal strategy with traditional 

methods, for example with a minimax tree search.3 

 

3 A minimax is a decision rule stating the best choice is the one that prevents a worst-case scenario. In 

a chess computer, this means that the best move is the one with the least chance of losing a piece. 

The effectiveness of a minimax tree search depends on the number of future steps observed. Although 

minimax is a simple rule, IBM applied it successfully to defeat Gary Kasparov. [47] 
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Figure 2 Applying a “decision tree” in First Aid to help determine: has the patient with chest pain suffered 

a heart attack? 

What is machine learning? 

AI can be achieved in different ways. At the time of expert systems, a system’s intelligence 

was programmed manually. The system designers had to specify all the potential AI ac-

tions themselves. Consequently, the intelligence was quite limited: the system could not 

deal with a situation if the designer had not provided a rule for it. Nowadays, AI systems 

are not driven by rules but by data: the AI systems learn the rules themselves from the 

data. The underlying algorithms of these self-learning systems are typically called machine 

learning algorithms. 

A specific category of machine learning is deep learning. This is an iterative search for 

mapping between the input and output of a model in the form of a series of mathematical 

transformations. These transformations are inspired by the way our human brain works: 

a so-called “neural network”. In our brains, our senses stimulate brain cells – the “neu-

rons”. Depending on the stimulus, these neurons may or may not send a signal to other 

neurons. Hundreds of billions of neurons combined lead to intelligent behaviour.  

A neural network consists of several layers: an input layer, multiple hidden layers and an 

output layer. The hidden layers extract properties from the data based on input. The prop-

erties of the final hidden layer are ultimately used to construct the output. In all the layers 

of the network, each neuron multiplies the input from the previous layer, multiplies it by 
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a weight, adds up all these multiplied inputs and applies non-linearity. Figure 3 is a sche-

matic representation of a neural network with 3 hidden layers.   

 

Figure 3 Schematic representation of a neural network 

A rule of thumb for machine learning is that the model’s performance improves as soon 

as more data becomes available for training the model. Advances in the digitization of 

processes have generated a lot of data that can be used for this purpose.  Combined with 

ever-increasing computing power and academic breakthroughs, [8] [9]  developments in 

machine learning are gaining more and more ground. 

Deep learning has many applications that come close to or surpass human performance, 

certainly in calculating power and speed. In the medical world, deep learning is used to 

diagnose skin cancer and classify CT scans. In self-driving cars, deep learning determines 

the direction and speed of the car based on cameras. In the fight against fake news, 

Facebook among others uses deep learning to assess the authenticity of texts. 

 

What will AI look like in fifty to a hundred years? In science fiction, we see futuristic images 

of machines acting as if they are human beings, and in many cases even have superior 

intelligence. A level of AI with an intelligence similar to that of humans is called artificial 

general intelligence (AGI); if the AI is smarter than humans, then we speak of artificial super 

intelligence (ASI). Some futurologists believe that AGI and in particular ASI could be man’s 

final invention. AGI or ASI could even be a threat to mankind, since we as humans can no 

longer keep up with the superior intelligence of such AI. [10] Obviously ethical aspects could 

come under pressure. 

Opinions are divided on whether (and when) this will ever happen. Many experts agree that 

deep learning in its current form is probably not suitable for producing human intelligence. 

[11] [12]  

2.1.2 Added value of AI 

AI generally provides a number of advantages and opportunities: 
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• AI can make faster and sometimes better decisions than people. Whereas a 

person sometimes needs a few seconds to minutes (depending on the amount of 

information to be processed) to make a decision, a machine learning model can often 

process thousands of data items in a fraction of a second. For example, fraud detec-

tion AI can monitor thousands of credit card transactions in real time and block 

potentially fraudulent transactions. 

 

• With AI, (scarce) expert knowledge can be used more efficiently. People of-

ten undergo training for several years before entering the labour market. Even a few 

years later, a person will not yet be at the top of their game. Expert knowledge is 

therefore scarce and difficult to scale up. With machine learning, an expert’s 

knowledge can be distilled into a model and thus this knowledge can be applied more 

widely. For example, Google has developed an AI system that can identify tumours 

from CT scans just as well as an experienced radiation oncologist. [13]  Such appli-

cation of AI can provide scarce expert knowledge in certain scenarios and thereby 

free up the “real” experts to do other work more efficiently. 

 

• AI is good at repetitive tasks. People often perceive such tasks as not giving 

satisfaction. However, if tasks are well framed, AI is ideally suited to take them on. 

AI does not have to sleep, rest, or take breaks because it will not get bored or tired. 

Repetitive tasks also lend themselves well to AI because (if the task is currently 

performed by humans) there is probably sufficient data available to train the AI. 

2.2 Risks when using AI 

Compared to traditional automation and (non-AI) algorithms, AI-based systems have a num-

ber of unique, new characteristics. If these are not sufficiently taken into account, generically 

speaking, they entail risks. These risks are inherent in the underlying effects of AI and exist 

regardless of the application domain. In this section we describe these characteristics, how 

they translate to risks, and provide specific examples in the application domain of telecom. 

2.2.1 Lack of accountability leads to further uncertainty in decision making 

An AI system generally translates a set of “input” variables into a certain outcome (“output”). 

In deep learning-based AI systems, it is not evident how a particular outcome is achieved. 

Consequently, it is not always clear how a decision came about, it is complicated to verify 

certain actions, and errors can creep into the system undetected.4 The authenticity of deci-

sions made on the basis of the AI application may also be called into question. 

 

4 Incidentally, the relationship between the number of neurons and intelligence is a topic for discussion. 

For example, it is not the number, but precisely the extent of Interconnection between neurons that 

determines the degree of intelligence. Artificial intelligence may lead to new insights here once the 

hypotheses for artificial intelligence have been tested. Note that many telecom infrastructures without 

AI are already complex systems, and we might question to what extent inexplicable (or incomplete) 

choices are already being made. 
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Example from the telecom sector: Covariance shift 

An anomaly detection system can detect and block suspicious traffic in a network. Such a 

system is trained to recognize abnormal patterns. Imagine that when a new browser is 

launched in the market, it applies a new protocol to better streamline HTTPS requests. As 

a result, a covariance shift takes place.5 In the past, during training, the anomaly detection 

system has not seen any traffic passing through this browser. As a result, this browser’s 

traffic is noted as “different” and blocked in the network. 

2.2.2 Unpredictability leads to a lack of trust 

In order to entrust AI systems with certain decisions, it is often important that the AI sys-

tem’s behaviour and outcomes are predictable. [14] There are at least two reasons why an 

AI system (despite it being a piece of software and its actions fully traceable), is capable of 

exhibiting unpredictable behaviour: 

• The algorithm is too complex for a human being to understand its behaviour. 

Although conceptually we can imagine that an AI model consists of a large number 

of layers with functions in between, a model’s precise behaviour is hardly or even no 

longer understandable or traceable in very large models. Currently we see AI models 

in use with hundreds of millions of parameters. [15] 

 

• The AI algorithm is not deterministic. Many “ordinary” algorithms are determin-

istic: if you run them twice with the same input parameters, you get the same result 

both times. However, this is not the case with all algorithms: some use randomness, 

such as Bayesian methods. [16] In these models, the parameters are not fixed val-

ues, but distributions of opportunities. When a prediction is made with these models, 

random samples are taken from the distributions, and the chances are very slim that 

the same sample is drawn twice. AI algorithms often belong to this latter category, 

or have similar, non-deterministic characteristics. If the algorithm, and therefore the 

result, is not deterministic, the application is more difficult to understand and control. 

 

• The algorithm is order-sensitive. Some AI models, including recurrent neural 

networks (RNNs), work on the basis of 'streaming' data – data is entered continu-

ously, followed by a continuous result. We see such models for recognizing language. 

This is logical, since the meaning of a word often depends on the surrounding words: 

there is a sequence effect. However, because of this effect, a certain input (such as 

a word) can be interpreted differently depending on the earlier and later input. The 

models have a 'memory' which influences the result. [17] 

 

5 A covariance shift can occur when the nature of the data changes. This means that the data on which 

a model is initially trained is no longer representative.  
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Example from the telecom sector: Non-deterministic systems 

To embed virtual network components in the physical infrastructure, an AI system can 

determine the best configuration. There are, however, countless configurations to work 

out and it is too costly to figure out the best one by brute force.  Inspired by chess com-

puters, engineers apply the Monte Carlo Tree Search to achieve the best configuration. 

[18] 

This method, due to the use of sampling, can never guarantee that the same configuration 

will be suggested twice, given the same environmental factors. Testing can therefore only 

provide some level of certainty how the model will behave in different situations. In addi-

tion, because the best configuration is not known in advance, it is not possible (for a 

human being) to verify whether the AI system indeed managed to come up with the best 

configuration. Of course, comparisons are possible with solutions for different systems or 

with the results of more traditional optimization algorithms to assess how ’good’ or ‘bad’ 

the outcome is; for example, the AI outcome could be disregarded if it is worse than from 

a traditional algorithm. 

2.2.3 Who is responsible when things go wrong? 

An AI system is not a legal entity but should be seen as a tool (just like a computer) helping 

a legal entity perform an action. [19] Thus, the use of AI systems does not remove respon-

sibility from the person who decides to outsource their task. The development of such 

systems usually involves various actors, who each make their own contribution. In such 

cases, there is uncertainty about who exactly is responsible when tasks are automated. 

It is also questionable whether the person or the legal entity using an AI system knows 

enough about that system to be able to take responsibility for it. This is probably a regulatory 

and/or supervisory task for the government: although many AI systems are designed to 

(literally) let people keep a firm grip on the controls, it is very questionable whether a person 

is also able to recognize when AI goes wrong, or respond in a timely manner. Thereby the 

effect of habituation also plays a role if an observer sees the AI always making the right 

choice. 

Example from the telecom sector: Who is to blame? 

An AI system is trained by a supplier and applied by an operator. The supplier trains the 

AI system using data from other telecom networks. Who is to blame when a wrong decision 

is made based on the AI system? In some cases, this can be set out in SLA agreements. 

AI can also impact key performance indicators (KPIs) that are not specified in these con-

tracts. In such cases, it may be unclear who is responsible. 

2.2.4 Autonomous systems can be abused 

An AI system’s outcomes depend on the input values. If it is possible to vary this input, it 

may be possible to change the outcome. With a deterministic algorithm, it is possible to 

reason how a certain change in input affects the output. As indicated above, this is generally 

much more difficult or even impossible with AI systems. Consequently, they are vulnerable 

to so-called adversarial attacks. [20] An adversarial attack is based on manipulated data 

that humans cannot distinguish from legitimate data. The data can be manipulated in such 

a way that AI makes the wrong decision, without people being able to recognize where the 

fault lies. [21] 
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Adversarial attacks, often generated by other AI systems, are therefore usually automated. 

In theory, there are few AI systems that cannot be fooled by a threat actor with enough 

computing power. 

Example from the telecom sector: Adversarial ransomware 

An anti-malware system based on AI recognizes files with unsafe content. A malicious 

party also has this system in place, and has used it to train its own AI (the "adversarial 

AI"), which can generate files that are unsafe (e.g. contain ransomware), yet not recog-

nized by the anti-malware system. As the anti-malware system does not identify the 

danger in these files, the ransomware can spread within the network [22]. As a result, a 

large part of the telecom provider’s files is encrypted, and the provider has to face extor-

tion. 

 

Along with manipulating the input data, manipulation is also possible in other stages of the 

AI lifecycle, as shown in Figure 4. During the training phase, the AI can (ultimately) be made 

to behave differently by manipulating the training data. Manipulation of the model and/or its 

structure can lead to the disclosure of information from the training data. The previously 

discussed adversarial attacks happen when the AI is actually in use (the production phase). 

 

Figure 4 Potential attacks on an AI system during its lifecycle. ML refers to machine learning. [23] 

2.3 Current AI applications in telecom 

Our research involved exploring the current and future applications of AI in telecom. This 

was based on agency research (in particular searching for case studies and white papers on 

product offerings) and discussions with telecom operators and suppliers. 

AI is currently mainly used in telecom infrastructures for: 1) configuration, planning and 

optimisation of how networks function, and 2) maintenance of the network. Below we give 
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an overview of the current applications of AI in telecom infrastructures identified in this 

research. 

2.3.1 Optimisation of telecom infrastructure 

The telecom sector has experienced a number of automation phases. Whereas previous con-

nections were still made manually by switching cables, this work was automated by 

hardware. Now we see these features no longer needing specific hardware but being virtually 

defined through software. 

The heuristics that optimize the network are devised by humans; think of the heuristics that 

determine how important or threatening a data package is that has to be routed, or how 

radio resources are allocated to a mobile network. Algorithmic optimization (of a configura-

tion) of functions in telecom networks has also been taking place for quite some time. These 

algorithms work on the basis of (among other things) traditional mathematical optimization 

methods. Some of these techniques have been around for hundreds of years. For example, 

the Newton-Rhapson method (1690) is used to determine the optimum of a mathematical 

function based on the derivative. The weighted least squares method developed by Gauss 

(1735) lies at the heart of solving regression problems. Methods such as linear programming 

(1939) help to optimize a system with preconditions. 

A large amount of data is generated in telecom networks, and this data is becoming increas-

ingly available for analysis in one central place. For example, Indian mobile operator Reliance 

Jio generates 4 to 5 petabytes of data daily from the network's operations. [24] This data is 

ideally suited for analysis and optimization. 

In machine learning, we find a new generation of algorithms that can be used for similar 

purposes as 'traditional' optimization techniques. The availability of large amounts of data 

enables the use of machine learning in telecom infrastructures. Machine learning methods 

are not tied by many of the limitations in traditional techniques. For example, traditional 

methods can only approximate linear functions, whereas with deep learning, in theory every 

continuous function can be modelled (the Universal Approximation Theorem). [25] In addi-

tion, unlike machine learning, traditional methods typically require assumptions about 

underlying distributions (such as a normal distribution) and input parameters to be inde-

pendent. Machine learning systems, however, can work without these assumptions.  

The following AI applications are currently being used or developed for telecom infrastruc-

tures: 

• Power management: Machine learning is used to achieve power savings in mobile 

networks. Based on meteorological data, the number of users and their position, 

antennas actively adjust their radiation pattern, direction and strength to demand. 

This results in energy saving, for example during the night when data demand is 

relatively low, and in a more efficient use of the base stations, because a larger 

surface area can be operated at set-up points where the demand for capacity is not 

uniform. 

• Radio optimisation: Currently, machine learning is used to optimize the flow of data 

to and from a base station in a mobile network. The distance to users, the number 

of connected users, and certain environmental factors determine the radio parame-

ters.6 [26] They in turn determine the maximum amount of data that can be 

 

6 Including the form of modulation (in LTE/5G: QPSK, 16-QAM, 64-QAM, 256-QAM, etc.) and the number 

of bits used for error correction.  
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transmitted per quantity of spectrum per unit of time (the reason being that with a 

potentially more efficient modulation, customers with a weaker signal cannot be 

served again). Interference also plays a role: radio resources can be coordinated 

between micro and macro cells. To maximize efficiency, algorithms are being used 

(already) to dynamically determine what part of the spectrum should be used for 

which user and with which parameters. The parameters of these algorithms can be 

“tuned” with AI. 

 

• Quality of Transmission (QoT) estimation: With optical connections, the signal can 

be disturbed or interrupted. Machine learning is applied to estimate in advance how 

well the transmission will work over a connection. Based on things like the cable 

length, other signals within the cable and the equipment’s age, it calculates the best 

path. The traffic is routed on the basis of this assessment. It is also conceivable that 

such algorithms are used in wireless networks, for example determining how much 

error correction or redundancy (e.g. retransmission) is used.  

 

• Optical network signal amplification: In optical networks, signal degradation occurs 

at several points. Currently various AI techniques are applied (such as QoT estima-

tion) to identify points and moments when degradation can take place. Here, the 

signal is strategically reinforced to minimize noise during transmission.  

 

• Path computation: In order to determine the best route between two nodes in a 

network, several algorithms have been developed that apply certain heuristics. For 

example, algorithms such as A* or Dijkstra were traditionally used to calculate the 

shortest path. However, there are more factors involved in determining the optimal 

path, and it is difficult to integrate them in traditional algorithms. Machine learning, 

on the other hand, takes into account such things as congestion and bottlenecks in 

the network and thus better estimates the optimal routes.  

 

• Self-organizing networks: Based on available information, network components can 

configure themselves to a limited extent automatically. In this way a mobile base 

station can find which other base stations are nearby, and thus automatically deter-

mine "neighbour relations". Such functionality can be used to quickly organize parts 

of a network. In practice, however, we see that the functionality is then disabled, 

and afterwards "fine tuning" is done manually. The functionality generally proves too 

unstable to allow for dynamic reconfiguration. 

2.3.2 Maintaining telecom infrastructure 

We see the following applications being used to maintain telecom networks: 

Performance monitoring: Monitoring signals within an optical transmission network 

is essential to detect malfunctions. This is usually done by measuring various pa-

rameters, such as optical signal to noise ratio (OSNR), non-linearity factors, 

chromatic dispersion (CD) and polarization mode dispersion (PMD). By monitoring 

these variables, problems in the network can be identified in time. Machine learning 

can better estimate which combination of values increases the risk of interference, 

and when it is best to intervene. 

 

Predictive maintenance: When equipment fails, this is very costly, both in terms of 

repair costs as well as lost sales and claims. Many factors affect the wear and tear 

of equipment and parts, including the weather, the average intensity of use and the 

type of component. To minimize network outages, models based on machine learning 
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can predict when outages are expected. Preventive maintenance can then be carried 

out. 

2.4 Future applications of AI in telecom 

This study, based on our desk research and discussions, also with experts, identified a num-

ber of future applications of AI in telecom infrastructures.  

2.4.1 Optimisation of telecom infrastructure 

In the future we expect to see a number of new forms of optimisation based on machine 

learning:  

• Smart handovers: In mobile networks, the signal can decline sharply if the distance to 

the base station increases or if there are physical barriers between the receiver and the 

base station (path loss, penetration loss). In a classic mobile network, handovers have 

to solve this problem, but that approach also has its limitations. A future solution to 

better mitigate this problem is Multi Tower Beam Forming, also known as “coordinated 

multipoint” or CoMP. The signal focuses on a device through a combination of coordi-

nated signals from multiple base stations. Such models can be based on AI and are 

expected to perform better than models that do not use it. 

 

• Network orchestration: Thanks to Software Defined Networking (SDN) and Networking 

Function Virtualisation (NFV), it is easier to define a network in one central place and 

combine data from various sub-systems. This data subsequently serves as input for ma-

chine learning models that can optimize the collaboration between the network functions. 

Several parties are devising a network based on AI. To this end they are gathering large 

amounts of data from all the network elements (such as measurement data, traffic data 

and so forth). This data will be processed in a model to create a set of configuration 

parameters for these same network elements. Based on changes in the network or its 

use, the AI can quickly reconfigure the network. 

 

• Optical network nonlinearity mitigation: In fibre optic networks, noise can occur due to 

non-linearities. Machine learning can be applied to clean up the signal for further pro-

cessing. This consequently increases capacity. 

2.4.2 AI-based telecom functions 

A number of new network functions can be achieved based on AI: 

• Bandwidth slicing / Resource allocation: In telecom networks, various applications use 

the same infrastructure and available resources. These applications do, however, have 

different requirements. Deploying resources efficiently (think of spectrum and “resource 

blocks” in mobile networks) can meet these requirements optimally. For example, appli-

cations that demand low latency work better alongside high capacity applications. The 

network “recognizes” the low latency requirement and treats the traffic differently than 

capacity-driven traffic. Machine learning helps to both recognize traffic flows and opti-

mize the distribution of resources. 

 

• Virtual topologies (VT): With virtual typologies, not only are the network functions vir-

tualized, but also the overall topology of the network. Thus, we can determine 

dynamically which transmission paths (light paths) to use, or, where possible, additional 

capacity should be provided, for example in the form of more connections or an additional 

local data centre. Machine learning algorithms determine the optimal parameters of the 
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topology. The high speed of this decision-making means humans cannot take on such a 

continuous configuration task. 

 

• Anomaly detection / malicious traffic detection: Here, AI is used to model normal behav-

iour within telecom infrastructures. Predictions of infrastructure behaviour are then 

compared to reality: if there is a large discrepancy between the real value and the pre-

dicted value, an event is considered deviant. By training anomaly detection on large log 

files, this technology can be applied in virtually all points in the network to identify de-

viant events. 

• Dynamic spectrum application: at present, licensed spectrum is mainly statically divided 

between operators. In systems like the American CBRS,7 more dynamic, automated 

mapping is possible. Users first “listen” to which signals they can receive (sensing), 

and/or consult the database (which frequency blocks are reserved?). They can then apply 

for spectrum use for free parts (automated). Based on algorithms, spectrum will be as-

signed more dynamically and between operators and other users. This technology was 

successfully tested in the DARPA spectrum collaboration challenge. [27] Such algorithms 

could be utilized for allocating (licences for the use of) frequencies. 

• Nowadays AI is still mainly used for micro-optimizations within specific components or 

functions. In the future, if current developments continue, AI is expected to play a more 

central role in telecom networks. This development is in line with the more general trend 

of (network) virtualization. [28] Controlling networks centrally, and “abstracting” the 

underlying infrastructure, creates a higher degree of flexibility with regard to the network 

layout. As AI can be used to implement this central control optimally, it acquires a more 

holistic, controlling role within telecom infrastructures. 

• Figure 5 below shows the architecture of a virtualized network that can be controlled by 

AI, as defined by an ITU working group. [29] The network has several network functions 

(NF). The functions generate data and make it available for training AI (based on ma-

chine learning, abbreviated here as ML). The network functions also support automatic 

control by AI. 

 

 

7 Citizens Broadband Radio Service. See e.g. [wikipedia.org] for a brief description. 

https://en.wikipedia.org/wiki/Citizens_Broadband_Radio_Service
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Figure 5 Architecture for an AI based telecom network taken from an ITU focus group report “Machine 

learning for future networks including 5G”. [29] 
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3 Risks of using AI in telecom infra-

structures 

In this section we present a model for analysing the risks of using AI applications in the 

telecom sector. That is to say, the model provides a framework for establishing a qualitative 

level of risk based on an application’s specific characteristics. On the basis of this assess-

ment, the supervisor can determine whether the risk is acceptable, or whether mitigation 

measures should be taken. 

When assessing the risks of AI in telecom infrastructures, we distinguish the systemic level 

(risk that a telecom infrastructure works as a whole) and the application level (risk with an 

individual AI application within a specific part of the infrastructure). 

Figure 6is the risk model developed for this study. At the top is an outline of the systemic 

level: the people, external factors and applications (including AI) that can cause risk events, 

which (ultimately) have a negative impact, causing companies and citizens to lose faith in 

telecom infrastructure and its applications. Our study focuses specifically on AI applications. 

At the systemic level, it is about embedding these AI applications. At the application level, 

we examine the relationship between these applications’ characteristics and the likelihood 

and impact of risk events. Later in this section, we will go into more detail about both levels. 

  

Figure 6 A model for the risks of AI in telecom: at the systemic and application levels 

3.1 Systemic level 

3.1.1 Theoretical framework 

Broadly speaking, a risk is a negative event that can occur with a certain probability. Alt-

hough it is (or seems to be) intuitively clear what the risks are, there is no one single 
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definition for the telecom sector. It is even questionable whether risks can be objectively 

assessed, or that there are necessarily associated subjective assumptions and choices. [30] 

To some extent risks can be assessed in advance. This does not mean that such an assess-

ment is always correct, complete and objective, or even possible. It is important to realize 

that not all risks are knowable.  To illustrate: an aircraft manufacturer could base the risk of 

crashing on the failure probability of individual components and the impact of that failure. 

However, the aircraft manufacturer must also take into account the simultaneous failure of 

components. These risks are knowable but can of course be “missed”. In addition, there are 

risks that the aircraft manufacturer cannot assess: retrospectively, a component could ap-

pear to have been sensitive to radiation, yet the aircraft manufacturer had not identified or 

been able to logically deduce this aspect. A final category, the known unknowable risks, 

involves the risks which people know can exist, but their precise extent cannot be estimated 

(Figure 7). In de context of this research, importantly the modelling can only involve know-

able risks. 

 
Knowable Unknowable 

Unknown Unknown knowable risks Unknown unknowable risks 

Known Known knowable risks Known unknowable risks 

Figure 7 The four risk categories 

In this study we apply the definition of risk as stated in [30]: A (knowable) risk involves a  

potential risk event (scenario), the probability this will occur and the (negative) effect of this 

event. The higher the product probability and effect, the greater the risk. [31] Depending on 

the method, another weighting or multiplication is used, see figure 5.7 in [30]. Lowering the 

probability and/or the impact are the logical ways to mitigate the risk. Conversely, the risk 

can be accepted if the negative event is highly unlikely, and/or if the negative effects are 

small or acceptable. 

3.1.2 Social risks 

Telecom infrastructures play an important social role and are considered vital. [32] More and 

more services are being delivered digitally, and have thus become dependent on a well-

functioning, reliable and always available telecom infrastructure. Users therefore have cer-

tain expectations when using telecom networks. Failing to meet these expectations can have 

negative consequences. We now look at which social objectives a telecom network fulfils and 

how AI can influence them. 

From the perspective of the entire telecom system, we should also consider the societal 

effects. If applications use telecom infrastructure and cannot work properly due to for ex-

ample outages, society has to pay the costs. In mission-critical situations, there may even 

be injuries. One example is the 'emergency button' on all C2000 two-way radios used by the 

police and the fire brigade. If that button does not work, officers in an emergency cannot 

call their fellow officers in time and may become victims in a dangerous situation. [33] 

So what are the relevant target parameters related to any risks in telecom infrastructures? 

In [30] we see a telecom system model based on services consisting of a network of nodes 

and links, both linked to a set of risk events. Our research looks specifically at the effects of 

telecom service outages as a result of these events. In Vriezekolk’s dissertation, [30] [30] 
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along with outages, we see other telecom infrastructure objectives that should be included 

in the research analysis as discussed below. 

Availability of networks 

Society depends more and more on the availability of telecom networks. As it is becoming 

such a critical infrastructure, telecom requires the highest possible availability. Applying AI 

can increase that availability, but also have a negative impact. When an AI system fails, it 

can sometimes shut down large sections of the network. If errors propagate from system A 

to system B, this can cause a chain reaction. 

Example: Chain reaction 

A mobile network applies “power management” procedures based on AI, determining 

which frequency bands are used in a base station. [34] If there are not many users, the 

number of bands is reduced to save energy. If it transpires that there have been no users 

in the surrounding areas for a longer period, the model can disable the base station en-

tirely. Consequently, a system to automatically determine “neighbour relations” (pairs of 

base stations between which a terminal can move in the network) fails. It seems as if 

there is less traffic for other base stations. This disables more base stations and propa-

gates the failure throughout the network. 

Integrity of information 

Integrity is all about the accuracy and reliability of information. AI can have a negative im-

pact on some areas of application. In its informing role, AI can compromise the integrity of 

information. An AI system may be able to transform noise from another system into incorrect 

information. 

Example: AI-generated information ensures obfuscation 

A predictive maintenance system uses moisture sensors in the ground to predict when 

cables will corrode. However, a broken sensor keeps on delivering the same data. The AI 

model, which is not prepared for the "broken sensor" situation, interprets this data as if 

the sensor is working. As a result, a corroded cable is spotted too late. One solution would 

be to run the sensors redundantly or include more (different) information in the model. 

Reliability of data 

Telecom providers are dealing with large amounts of sensitive information; not only the 

information that customers exchange over the network, but also (meta)data about custom-

ers and this traffic. AI applications in telecom infrastructures can be (partly) trained based 

on this sensitive data. It is conceivable that a malicious person can trace sensitive data from 

these AI systems. 
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Example: trace personal data from AI 

An AI system detects fraud on the basis of subscribers’ characteristics. The system is 

continuously trained using customer data and information on fraud cases. It is possible 

that one characteristic (or specific combination of characteristics) only appears for one 

subscriber. Everyone with access to the fraud detection system can now trace this partic-

ular person as fraudster by entering the data. The system has to be built in such a way 

that the number of persons who can be traced (the cell size) based on outcomes is always 

above a certain lower limit. 

Potentially unethical choices in telecom infrastructures 

When choices have to be made in a telecom network, for example about which traffic has 

priority or where certain capacity is used, some social values may be inadequate or not 

observed. For example, if emergency services must always be able to use a certain minimum 

capacity in a mobile network, then this requirement should not be undermined by the appli-

cation of a particular AI algorithm. Unlike the aforementioned impact, this is an effect at the 

societal level, where the objective is not a specific application (including provision of the 

required connectivity) but the socially desirable (ethical) outcome. 

In some cases, a decision can be made on the basis of data that should not be used for this 

purpose or is at least debatable. Several examples are known, such as applications that use 

the battery level of a smartphone to determine the user’s creditworthiness. [35] 

Example: Decisions based on undesirable information 

AI that has access to all the data available to a telecom operator makes integral decisions 

based on that data. Because AI itself models the relationships between in and output, it is 

not known in advance how that information will be used for decision-making. Can AI for 

example give calls to customer service lower or higher priority based on the fact a cus-

tomer has not previously reported a complaint to customer services? The same risk applies 

when telecom data outside the telecom sector is used in AI applications.   

Example: Pre-emptive or prioritising? 

In a disaster scenario, it is crucial that emergency services can always communicate. This 

can be arranged in different ways in a network. For example, capacity can be permanently 

reserved for emergency services (a type of “escape lane”), or the capacity of users with 

lower priority is reduced the moment emergency services need it. [36] In the past, various 

techniques proved to have individual advantages and disadvantages in different scenarios. 

A person or system that designs and manages a telecom network must weigh up these 

pros and cons in a normative framework. An AI system may not be able to make its own 

appropriate normative decisions.  

3.1.3 Risk propogation in the telecom chain 

Risks should be considered not only individually, but also in relation to each other: what 

happens when two events occur at the same time? What happens if one event is the result 

of another event?  

Figure 8 shows schematically how AI applications, people, external factors, and existing au-

tomation (whether or not interactive) can lead to risk events. These events negatively impact 

telecom infrastructure’s objectives, endanger the telecom services’ values, and negative ef-

fects may arise due to the malfunctioning of the individual applications. Here we focus on 

the violation of telecom infrastructures’ objectives.  
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Figure 8 How AI applications cause risk events and ultimately have a negative societal impact 

Deploying AI applications in telecom infrastructures can make a difference to the overall 

extent of risk at a systemic level. Any risk that already existed and has not increased or been 

reduced by applying AI is not considered in this study. Differences can arise (see Figure 8) 

in the following ways: 

• Applying AI. We discuss the risks at application level in paragraph 3.2. 

 

• Interaction between AI application and other systems. We will also discuss this in 

paragraph 3.2 correlated to probability and/or effect. 

 

• Replacing people with AI. Having AI perform a task incurs risks, and these can be 

both higher or lower than when a person performs that task. This study does not chart 

the risks of human action in telecom infrastructures. However, the model presented in 

paragraph 3.2 can help to determine the risks of the replacement AI application, and 

thus inform the decision whether to deploy an AI application that replaces humans. 

 

• Cyber (in)security of AI applications. Of course, AI applications are also subject to 

cyber threats and associated security risks, which we discuss in paragraph 3.1.4.  

 

• Applying AI to mitigate risks. In contrast, this concerns AI applications specifically 

geared to mitigating risks. Obviously, the positive effects have to outweigh any potential 

new risks. We discuss this aspect in paragraph 3.1.5. 

3.1.4 Cyber (in)security of AI applications 

AI applications are information systems and are therefore subject to all potential cyber 

threats (breaches of confidentiality, integrity and availability of information). Berghoff et al. 

[37] provide an analysis of weaknesses broken down into the various phases of an AI appli-

cation's lifecycle. This highlights the large number of risks that already existed for non-AI-

based information systems in telecom infrastructure: information security is needed wher-

ever we use data. The risks found by Berghoff et al. [37] apply to some extent in regular 

systems and to the decision-makers (and thereby deal with manipulated information).  Table 

1 is an overview of the new weaknesses found (in our view) when using AI.   
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Table 1 Potential weaknesses of AI applications regarding information security [37] 

Phase Reliability Integrity Availability 

Planning • The (partial) use of existing models that contain malicious elements 

• Backdoors and bugs in software frameworks for machine learning 

Data collec-

tion 

• Large amounts of data are 

required to train a model; 

this concentration of data is 

potentially risky. 

• “Poisoning attack” whereby 

training data is manipulated 

to influence the ultimate re-

sult of the AI application (e.g. 

with hidden “trigger pat-

terns”8) 

• A bias occurs in the train-

ing data for a subset of 

cases, causing the ulti-

mate AI application not to 

work properly for this sub-

set 

Training • Training is often conducted 

in a shared (cloud) infra-

structure, making it more 

difficult to guarantee confi-

dentiality. 

• Training in a shared (cloud) 

infrastructure means there is 

a (greater) possibility of   

sabotage occurring. 

 

Testing & 

evaluation 

 • Manipulation of the test set 

can introduce a bias (in the 

feedback loop to training). 

 

Operation • The model can contain ‘hid-

den’ information on sources 

(e.g. if a cell only contains 

one person), which can ex-

pose the model. 

• Backdoors and bugs in un-

derlying (cloud) 

infrastructure can endanger 

reliability. 

• An attacker can manipulate 

weights in a model (thereby 

introducing ‘trigger patterns’ 

and affecting outcomes) with-

out this being detected. 

• Backdoors and bugs in under-

lying infrastructure can be 

inputs for sabotage. 

• Adversarial attacks. 

• Problems found in an AI 

system are difficult to cor-

rect without retraining; 

the turnaround time and 

thereby period of unavail-

ability can be 

unacceptably high. 

3.1.5 Mitigating risks based on AI 

AI applications in the telecom sector not only cause risks but are also used to mitigate risks. 

This can be done in a number of ways: 

• Anomaly detection. Based on small signals or a combination of signals, AI can 

detect a certain deviation earl(y)ier (e.g. a failing component). Thus, a relevant part 

can be replaced more quickly, reducing the risk of (later) outages. Another example 

is using AI-based firewalls that can recognize new forms of dangerous traffic without 

having previously observed them. This lowers the level of risk because there is a 

reduced likelihood of risk. 

 

Unlike the use of AI for direct control applications in telecom infrastructure, the risks 

here are lower. If the system correctly observes certain things (“true positives”), the 

added value is high, whereas not observing things (“false negatives”) does not lower 

the risk level compared to the situation without AI. Moreover, incorrectly observing 

things that are not harmful (false positives) can cause problems, although in many 

cases these will be less than the added value of the “true positives”. 

 

• Root cause analysis. In a fault situation or report of failure, AI can be used to 

determine the cause of failure more quickly. This enables more effective and faster 

action. The level of risk becomes lower because the negative effect is minimalised. 

 

8 An infrequent combination of input parameters that remains untested in testing/validation, and forces 

a certain outcome in the AI model. 
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Simulation. If large sections of a telecom infrastructure are controlled by AI, it is 

easier to simulate how the system behaves in the event of a calamity. For example, 

using a copy of the steering model, you can test what happens when large parts of 

the network fail or for example when misinformation is entered. Such a 'fire drill' can 

in principle even take place continually. This type of simulation is much more com-

plicated to achieve for an organization where systems work together with people. 

When AI is used for risk mitigation, a consideration will have to be made as to whether the 

deployment of AI caused a net increase or reduction in risk level, and/or the maximum level 

of risk is not exceeded. 

Example: send technicians to the right location 

In a telecom network, many network functions are interdependent; the underlying cause 

of an error may be due to an error occurring in a completely different system. Determining 

the underlying cause is sometimes difficult, especially (with outage) when it needs to be 

done quickly. AI can speed up this process by assessing the location of the root cause 

based on network information. The AI could, of course, be wrong and thus actually delay 

the recovery process. However, to assess the AI’s effectiveness, a large number of simu-

lations can simply be carried out beforehand, to check whether the AI draws the correct 

conclusion. During a calamity, AI could also make multiple assessments, whereby data 

from another subsystem is continually removed, and checks are made whether the same 

conclusion is still valid. 

3.2 Application level 

3.2.1 Theoretical framework 

There are several ways to qualify or quantify risks. A commonly applied method is that of 

Fine & Kinney [31]. Risk is modelled as the product of probability, exposure and effect, and 

these components are scored according to Table 2 below.  

Table 2 Method for scoring risk components according to Fine & Kinney [31]  



 

 Dialogic innovation ● interaction 32 

Probability Exposure Effect 

10 Highly probable 10 Constantly 100 Catastrophe, many fa-

talities, or >$107 damage9 

6 Possible 6 Daily during works 40 Disaster, few fatalities, 

or >$106 damage 

3 Unusual, but possible 3 Occasionally (weekly) 15 Very serious, fatality, or 

>$105 damage 

1 Unlikely, but possible in 

the long term 

2 Every month 7 Substantial, injury, or 

>$104 damage 

0.5 Highly unlikely 1 A few times a year 3 Important, disability, or 

>$103 damage 

0.2 Almost unimaginable 0.5 Very rarely 1 Considerable, First Aid or 

>$100 damage 

0.1 Next to impossible   

 

The product of the above components indicates the extent of risk and can be converted to a 

qualitative indication in the table below.10 

Table 3 Risk scores according to qualitative assessment and measures in Fine & Kinney’s method [31]   

Score Risk Measure 

>320 Too high Consider stopping activities 

160-320 High Apply large measures immediately 

70-160 Moderate Apply simple measures 

20-70 Little Attention required 

<20 Slight Acceptable 

 

Analogous to the Fine & Kinney method, it is possible to determine the risk level of AI appli-

cations in the telecom sector by assessing the components’ probability and effect.11 

3.2.2 Probability 

Looking at the aspects of AI applications in the telecom sector that determine the likelihood 

of a negative event occurring, we see a number of categories strongly related to the way the 

AI application works. Below we explore these aspects in greater detail and show how they 

relate to the AI characteristics described in paragraph 2.2.2.2 

 

9 These figures are from an original 1979 study on U.S. Navy weapon systems (merely for illustration 

purposes and allowances should be made for inflation and context). 

10 See the interactive version at [diasli.de]. 

11 The Fine & Kinney method assumes that probability, exposure and effect are knowable and can be 

determined with certainty. We point out that there may be uncertainty on these axes, and that the 

most pessimistic value could be used if an assessment of the maximum risk is required. 

 

https://diasli.de/3248/9ypPsAoxCoK
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Autonomy 

AI applications often take over tasks normally performed by people, or they support people. 

This means that these systems have a degree of autonomy. We can distinguish two forms 

of autonomy: autonomous learning and autonomous action: 

Autonomous learning 

Today’s AI model has been developed on the basis of large amounts of (historical) data. 

From this data, an algorithm 'learns' the desired results with certain input. There are several 

ways to shape this learning or 'training': 

• Offline learning. A model is trained once or every so often on the basis of a 'static' 

dataset. Both the model and the data used can be tested and validated before the 

model goes into production. There are also (non-AI-specific) risks surrounding infor-

mation security, for example as a result of manipulating the training data, see [37] 

and para 3.1.4. 

 

• Online learning. A model is trained as with offline learning and then retrained pe-

riodically based on new data. Continuous testing and validation are also possible. We 

note that AI outcomes may affect the data used for training, thus creating a kind of 

'self-reinforcing effect'.  

 

• Continuous learning: A model is continuously updated using incoming data. Think 

for example of the log data generated in telecom equipment. Unlike with online 

learning, there are no longer different ‘versions’ of the model: each inference request 

has potentially a direct effect on the following AI decision. We see two forms of risks: 

 

o (Autonomous) model drift. Without sufficient supervision, there is a risk 

that over time, the model will generate incorrect outcomes or present one 

specific outcome. 

 

o Poisoning attack. An attacker could manipulate the data that the system 

uses to learn in such a way that the final outcomes also change. An algorithm 

that should intercept dangerous traffic could slowly 'get used' to such traffic 

(because an attacker exposes the system gradually to more and more of this 

traffic), and at some point allow it to slip through entirely. [37] 

 

Berghoff et al. also noted [37] that although an attacker has more opportunities to 

manipulate where a system is learning continuously, the effects will be temporary. 

 

The likelihood of negative events occurring as a result of applying AI is greater if 

there is insufficient testing during an AI model’s training phase or validation of 

whether the applied data and method are adequate or not. This risk is greater when 

online learning is involved and greatest with continuous learning. 

Act autonomously 

An AI application can be applied in various ways: 

• In a closed loop scenario, the AI system performs actions directly. The only action 

people can perform is switching off the system. One example is speech recognition 

software. 
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• In an open loop scenario, the AI system’s role is to provide support.  AI presents a 

person an outcome, and on the basis of this outcome, the person can act. In this 

scenario, it is possible for people to deviate from the advice and/or check this advice 

based on other information. Examples are expert systems that help doctors form a 

diagnosis. 

 

 

 

• In a rule-constrained closed loop scenario, an AI system can perform direct actions, 

but is restricted by certain “hard” rules. Breaking the rules results directly in the 

system being disabled or failing to perform the action. An example is autonomous 

vehicles, which are often equipped with various 'fail safe' rules that ensure a car 

makes an emergency stop in unsafe situations. 

 

 

• In a human-in-the-loop scenario, AI can perform actions directly, but a human can 

stop or adjust these actions if necessary. An example is autonomous vehicles where 

people have to keep their hands on the steering wheel. 

 

 

• In an AI-in-the-loop scenario, one or more additional AI systems monitor an AI 

system that performs actions. The controlling AI model can view the original inputs 

and the AI's decision, and assess whether this decision is correct. 

 

 

 

Another form of implementation is by having multiple AI systems make the same 

decision, and only execute it if the decisions are the same. This principle is applied 

to navigation systems in aircraft. Three computers with different implementations of 

Input ActionAI

Input ActionAdviceAI

Input ActionAI

Input ActionAI

Input ActionAI

AI
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the same algorithm calculate navigation parameters, and the outcomes are only used 

to control the aircraft if the three results are exactly the same. 

 

 

Note that in scenarios involving people ("human-in-the-loop" and "open loop") there is a risk 

of habituation. Over time, people's trust in AI can grow and/or attention can decline (“vigi-

lance decrement” [38]), making it less likely these deviations are detected, and there is in 

fact a closed loop, and therefore a greater risk.  

In fully autonomous scenarios, the impact of traditional information security risks is growing: 

an attacker who can change the weights of an autonomous AI model can remain undetected 

for longer due to the complexity of the models. 

The likelihood of negative events occurring as a result of applying AI is greater if an AI 

system can act directly. Although the risks can be mitigated by human control, it is highly 

questionable whether a human can always oversee the consequences of a decision and 

intervene quickly enough, and whether, over time, there will be too much trust in AI sys-

tems. In some situations, AI can perform better than a human, but even then, the 

likelihood of negative events increases if there is no supervision. 

Unpredictability 

The degree of predictability has a major impact on the extent to which we can assess the 

probability of negative effects. As mentioned earlier, AI applications based on Deep Learning 

are much more unpredictable than rule-based algorithms due to the high complexity of such 

AI models. It depends on the specific form of deep learning and its implementation in the 

application; the elements we discuss below have a major impact on predictability. 

Transparency 

Some forms of AI, especially those based on deep learning, consist of a large number of 

layers and coefficients. It is not easy to deduce from these how the model behaves and on 

what basis decisions are made. Figure 9 presents a striking example. A model was trained 

to distinguish various animal species. An evaluation of the model showed that although the 

outcomes were correct, the model’s decision to classify an animal as a wolf was apparently 

based primarily on the presence of snow in the photo. Consequently, new pictures of other 

animals with a lot of snow in the background also produced the classification 'wolf'.  

Input Action

Agree?

AI

AI

AI
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Figure 9 AI’s use of information to classify animals [39] 

The lack of transparency in AI models makes it easier for a malicious person (within or 

outside the organization) to perform manipulations and causes these to remain undetected 

for longer. In this way an attacker with access to a model can change weights without this 

being noticed directly, but which create a trigger pattern in the system. 

A non-transparent system increases the risk of adversarial attacks. [40] If the AI is non-

transparent, characteristics that are not robust (such as snow in the husky-wolf example) 

may be used for classification. If it is not known which precise characteristics are being used, 

a malicious person can manipulate the non-robust characteristics without the system devel-

oper being aware of this.  

There are also conceivable scenarios where transparent AI is not desirable. If a security 

system has precisely known rules, an attacker can search for holes and the adversarial attack 

is easier to carry out. In a continuously learning non-transparent system, the systematic 

search for a leak is more difficult, but of course the system is not by definition safer.  

Non-linearity 

AI models, depending on their implementation, can exhibit strong non-linear behaviour. On 

the one hand, this ensures that these models can form very powerful representations. On 

the other hand, such behaviour makes it more difficult or impossible to assess the likelihood 

of negative effects. Figure 10 is an example of a model where an outcome is assessed on 

the basis of two parameters (x and y, shown as red and green; this could be a classifier that 

categorizes network traffic based on two properties like 'good' or 'bad'). As the image demon-

strates, the transitions at certain points are sharper than at others. In the centre, the 

outcome is most sensitive to input changes: a small adjustment can cause the outcome to 

go one way or the other. 
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Figure 10 Example of a non-linear model with two parameters and ‘decision boundaries’ for classifica-

tion in two categories (source: Dialogic). 

Researchers recently discovered an example of nonlinear behaviour in practice, namely in 

an algorithm for self-driving Teslas that recognizes speed signs. By extending the middle leg 

of the number "3" with a few centimetres of tape on a speed sign marked "35", the car 

suddenly identified the number on the board as "80". [41] Figure 11shows this schematically. 

An AI model’s assessment ("probability of it being an 80 sign") increases non-linearity as a 

result of a very specific characteristic. 

 

Figure 11 Non-linear activation functions in AI models lead to non-linear behaviour in the model (source: 

[41], visualisation: Dialogic) 

Non-linearity has a greater impact on the likelihood of negative effects if the data the model 

uses can be manipulated by third parties (as in the example with the speed sign), and if the 

data is not properly validated and certain input values fall beyond the limits to which the 

model was trained. 
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The predictability of AI models has a direct impact on the amount of negative effects 

occurring as well as the extent to which these can be determined with certainty. The 

greater the lack of transparency, the greater the risk (the model’s operation is difficult to 

control) and there is the possibility of non-linear behaviour. The risk is greatest if the data 

can be manipulated or is insufficiently controlled. 

 

There are various methods that increase the predictability of AI systems. One method is to 

create a simulation that can test the AI system before it is applied. For a classification model 

with two parameters (x,y) as input that can assume values between -1 and 1, it is easy to 

explore the entire input-output space. By placing each input parameter on an axis and trying 

out the potential values, we can determine the decision boundary (the moment when the 

model chooses between A and B) of a classification model. 

Because of the large parameter space in which AI systems make decisions, it is difficult to 

explore the entire input space. [37] This soon makes it very complicated to interpret the 

decision boundaries in a high dimensionality with sometimes more than 1000 input variables.   

New situations 

An AI model is often trained with large amounts of data collected in the past. Thus, an AI 

model learns which outputs are suitable for which combinations of inputs. Because this learn-

ing is done on the basis of historical data, the AI model assumes that new, previously unseen 

combinations of inputs, can be predicted based on earlier combinations. In some situations, 

this assumption may be incorrect. For example, it has been shown that historical stock prices 

can be perfectly predicted based on AI models, but these models are anything but capable 

of predicting future stock prices correctly. The adage past results do not guarantee future 

performance therefore also applies to using AI. 

AI cannot cope well with new situations because it lacks an 'understanding' of the under-

lying relationships. AI only looks at input and output, and the underlying relationships are 

nothing more than a 'black box'. The likelihood of risk events increases in scenarios where 

new situations can arise. 

 

Because of the above, it is important that the limits placed on inputs to an AI model are 

known and observed. For example, a model could be trained and tested within a certain 

range of a particular input variable. Technically speaking, such a model will be able to gen-

erate outcomes beyond this range (illustrated in Figure 12). However, these outcomes might 

bear no relation to reality, because the model has never been trained in them: the model 

'extrapolates' reality but in a purely mathematical way, without it being established as valid.  

AI models have limitations when it comes to input data. If the data entered lies outside 

the validated range, the outcomes may also be invalid. It is important that these bound-

aries are known and enforced in the use of AI. Otherwise, the likelihood of risky events 

(due to incorrect outcomes) increases. 
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Figure 12 Example of a model trained in a certain input range, that will generate output (the colours in 

the chart) for values beyond this range 

Correlation 

It is conceivable that several events have to take place first before a negative effect occurs. 

For example, many systems in aircraft are duplicated. In principle, negative effects only 

occur when both systems fail. However, the events that (together) have a detrimental effect 

may be correlated. In the aircraft example, it is feasible that both systems have the same 

defect or suffer from common cause failure. If events are related, we call this a correlation 

between the events (regardless of the cause).  In the context of AI applications in the tele-

com sector, we see that a correlation of events can impact the likelihood of negative effects 

in two ways: 

• The output of one AI system is used as input by another. A fault in an earlier 

system can thus lead to a fault in a later system, via all the mechanisms described 

in this paragraph (e.g. invalid input data). 

 

 

 

An AI system’s output is also used as input for the same system, or the 

systems are otherwise linked.12 For the same reasons as above, this can lead to 

an escalation of incorrect outcomes.  

 

 

12 See [26] for an example outlining a situation where several AI “agents" operate and learn autono-

mously, but share observations. 
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In a telecom network, a correlation scenario might be: a base station in a mobile network 

incorrectly stipulates that the radio signal must be amplified in a certain direction. A second 

basic signal measures an adjacent signal and adjusts its own configuration accordingly, which 

results in a similar error, and this is detected by the next base station. The error then infil-

trates like an oil slick through the network. 

 

Correlation of events can increase the likelihood of negative effects. The highly linked 

systems in telecom networks mean that when AI applications use each other's or their 

own output as input, the probability of correlation is highest. 

3.2.3 Effect 

Looking at the effects of risk events arising from AI applications, we observe two determining 

factors: damage (the severity of the effect) and scope (the scope of the effect). In addition, 

we see that effects can be correlated; in other words, they can strengthen each other if they 

occur simultaneously. 

Damage 

The potential damage that AI can cause in a risk event is related to the algorithm’s action 

framework (i.e. humans, who would make the wrong decision based on AI advice) − the 

more important the decisions, the greater the risk. A larger number of different action op-

tions means that evaluating them could also be complicated for an algorithm supervisor. 

The potential damage is greater if a human cannot (timely) intervene or if the algorithm's 

decision scope is not otherwise restricted. In this context, all the previous considerations 

regarding working autonomously (p. 33 apply. 

The more influential the (indirect) decisions of an AI application, the greater the negative 

effects in a risk event. Where an AI application acts autonomously, the negative effects 

are in some cases greater. 

Scope 

In addition to an AI application’s action framework, the scope of AI actions is significant. In 

a telecom network, the scope can convey the number of (potentially) affected users or geo-

graphical areas. A telecom network has different 'layers' (such as access, transmission and 

core levels) where the scope is constantly expanding. Regarding the scope of an AI applica-

tion in a telecom network, we see the following gradations: 

• Completely isolated. The algorithm makes choices that have an impact in a tightly 

defined environment. The AI outcomes have no impact whatsoever on other systems 

within the telecom infrastructure. An example is an algorithm that optimizes beam-

forming in a mast or improves noise reduction in a bundle of VDSL lines. A wrong 

outcome only impacts the connections in question. The applications are generally 

highly decentralised. The scope is limited to (1) a single or small group of users, (2) 

a geographically strictly defined area, and/or (3) only the access part of the network. 

 

Input OutputAI
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• Partially isolated. An algorithm’s action framework is well defined, but there are 

ways an incorrect decision can impact other systems. This occurs, for example, if an 

algorithm output has a measurable effect on another system. Yet another conceiva-

ble route is that the failure of an AI system leads to surpassing security limits (e.g. 

a residual-current circuit breaker or fuse) that cause other systems to fail. The scope 

is limited, but is available to a larger group of users, larger geographic area, and/or 

more than just the access part of the network.  

 

• Not isolated. These are systems designed to control other systems. An error in the 

steering system has a direct impact on the functioning of the controlled systems. 

The scope is potentially the entire network, all users, and the entire geographic cov-

erage area. 

A technique that deserves special attention is edge computing, whereby intelligence (be it 

application-specific, and possibly based on AI) is applied to the periphery of the network. 

Although these applications’ sphere of influence is local, there is a risk of influencing other 

applications that use the same infrastructure. 

In AI applications decentralised at the local level (and risks not correlated with each other), 

there are generally smaller negative effects on risk events than with central AI applications 

designed to control other systems. 

Correlation 

Earlier we discussed that the correlated probabilities of risk events can lead to new (or a 

higher than expected probability for existing) risks. Correlation can also increase risks re-

garding effect. An analogy is securing a building from burglary: if the alarm is not switched 

on, there is no immediate increased risk of damage from break-in; after all, the door is 

locked. If only the door is not locked, there is also no immediate increased risk (after all, the 

alarm still works). However, if both the alarm is not turned on and the door is not locked, 

the risk is much greater than the sum of both risks: a burglar can now enter without any 

problems, and there is damage. 

Domino effect 

If systems are connected and decisions in one system affect another system, there is a risk 

of a “domino effect”: a system error causes an error in the next system. Such a mechanism 

was at the root of the “flash crash” on Wall Street in 2010. One algorithm detected erroneous 

input as an anomaly and decided to sell securities. Other algorithms saw this act as deviant 

and acted in the same way, resulting in share prices ultimately collapsing and trading having 

to be shut down. [42] The rapid actions of the algorithms and the fact that it was not known 

that the algorithms contained “anomaly detection” mechanisms, meant that share prices 

slumped very quickly. It is of course equally possible that human stockbrokers would be 

susceptible to the same thing: they can panic, with ultimately the same effect. 

Redundancy and variation 

Redundancy is one way of mitigating risks. By duplicating elements, the failure of one ele-

ment can be absorbed by the other. In addition, the output from the two elements can be 

compared and when a difference arises, this is noticed (works best if the elements are com-

pletely different implementations of the same function). Redundancy is often installed in 

telecom networks; for example, networks are set up in rings, so that disconnection does not 

lead to a complete loss of connectivity between locations. 

One concept associated with redundancy is variation. Introducing redundancy to mitigate 

risks is only effective if the failure of the redundant elements is not mutually correlated. Two 
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AI systems that are redundant from each other will − if they are otherwise exactly the same 

– make precisely the same error given the same input; in that case, in practice there is no 

reduced risk at all from redundancy. This can be solved by introducing variation. The two 

redundant AI applications are two different deployments (completely separate implementa-

tions, or perhaps an older version).13 There is therefore less chance that both systems 

encounter an error at the same time. 

The negative effects of a risk event are smaller with an AI application acting in a redundant 

part of a telecom infrastructure, as long as there is no correlation between preventing risk 

events in multiple redundant setups. 

3.3 Determining risk 

As explained earlier, the actual risks of applying AI in telecom infrastructures can only be 

determined by analysing them at the systemic level. Not only AI applications in isolation, but 

also the interaction between AI applications and other systems have an impact on the oc-

currence of risk events. The resulting negative effects are strongly linked to the ultimate use 

of the telecom infrastructure. It is beyond the scope of this research, and in our view not 

possible, to create a fully comprehensive risk model, without looking at specific applications 

and situations. 

That said, it does make sense to look at the characteristics of AI applications and their direct 

impact. We call this the application level. Figure 13 presents the model for assessing the 

additional risks incurred with individual applications of AI in telecom infrastructures.   

As discussed, the level of risk depends heavily on the characteristics of the AI application, 

which (indirectly) determine both the probability and the impact of risk events. Policies could 

be implemented for the relevant characteristics of AI applications. 

Risk mitigation by the operator can reduce the risk level of an application to an acceptable 

level (for the operator and society). In this area too, policy can be implemented. For a su-

pervisor, this poses a key policy question: what level of risk is acceptable to society, and 

what mitigation measures should operators take? 

Scoring risk aspects at application level 

While the exact weighting of aspects in the risk model may be subject to discussion, based 

on our research (in particular the literature and discussions with experts), we provide the 

first steps for a scoring model as shown in Figure 14. 

In Figure 14, each risk-relevant characteristic of an AI application is given a score between 

1 (lowest) and 10 (highest). The criteria that lead to a specific report score are shown in the 

grey blocks, as explained in detail above. 

 

13 It is interesting to see how this is done in the Space Shuttle [space.stackexchange.com]. 

https://space.stackexchange.com/questions/9827/if-the-space-shuttle-computers-all-output-contradictory-commands-how-is-it-chos
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Figure 13 Model of additional risks when applying AI in telecom infrastructures, with policy starting 

points 

 

Figure 14 Assessment of AI applications in telecom infrastructures based on the risk model 
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4 Role of the Dutch Radiocommunica-

tions Agency 

In this section we discuss the role that the Dutch Radiocommunications Agency as supervi-

sory body can fulfil when dealing with the (additional) risks arising from the use of AI in 

telecom infrastructures. 

4.1 Action framework 

In paragraph 3.1.3 we discussed the potential negative social effects (including injury, dam-

age and loss of faith in the system) of applying AI at the systemic level. The supervisory 

body can intervene at two different points in this process (see Figure 15): 

1. Within telecom infrastructures. The supervisory body can take measures in order 

to ensure that no irresponsible AI systems are applied in telecom infrastructures with 

negative characteristics that (could) lead to additional risks. 

 

2. Outside the telecom infrastructures/in telecom users’ OTT applications. The 

supervisory body can try to develop the relationship between applications and de-

mands for telecom infrastructures, in order to limit “irresponsible” use of telecom 

infrastructures. If the application side has more knowledge and awareness of the 

risks in underlying telecom infrastructures, a better assessment could be made of 

the risks at application level.  

 

 

Figure 15 AI characteristics that propagate negative social effects 

Demands can be placed on applications and the actual peripheral equipment. Existing Euro-

pean regulations provide a useful framework. The relevant EU directives state that 

telecommunications peripherals must meet 'essential requirements'. For example, Directive 

2014/53/EU, known as the Radio Equipment Directive (RED) states: “[Radio equipment be-

longing to certain categories or classes must be constructed in such a way as to meet the 

following essential requirements: radio equipment does not harm the network or its opera-

tion or abuse the network resources causing an unacceptable deterioration of the service.]"  

[43] A supervisor could make efforts to 'activate' this additional obligation (whereby the 

European Commission is authorised to adopt delegated acts that enable such 'activation'). 

[44] 
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This study focuses on a telecom supervisory body, and therefore primarily the first link in 

the chain. That is not to say the supervisory body could not also operate in the application 

domain. In a sense, the Dutch Radiocommunications Agency is already part of this domain 

through its Telekwetsbaarheid (tele-vulnerability) programme, which raises awareness about 

outages among users of telecom infrastructures. [45] 

4.2 Assessing risks 

The way negative effects are considered relates to the level of ambition regarding telecom 

infrastructure and is therefore a social consideration. If the starting point is that (certain) 

telecom infrastructures can be used for mission-critical applications (with added social 

value), then the requirements regarding risks are higher than with a lower ambition (e.g. 

only business-critical use). We can therefore define risk effects in relation to telecom net-

works’ desired service levels (indeed the level of all the infrastructures combined, because 

for critical communication, a combination of various infrastructures can spread the risks).14  

A supervisor aiming to assess AI risks in the telecom sector will first have to determine a 

level of ambition with regard to infrastructures: if it is socially desirable that mission-critical 

services can operate on the basis of the available telecom infrastructures, the risks take 

precedence over when merely ‘best effort’ services are required. 

The previously developed risk model can then form the basis for a supervisory body to de-

termine at application level which AI applications pose risks. It also explains how AI could 

actually contribute to reducing risks. A supervisory body can consequently regulate specific 

applications. Another method is to examine the AI applications’ characteristics in order to 

determine which combinations of characteristics lead to a (in the eyes of the supervisory 

body) too high (additional) risk, and compile regulations on the basis of these combinations. 

4.2.1 Use in identified applications 

The risk model can be used for the AI applications identified in this study to get an idea of 

which ones could cause additional risks. Table 4 provides an overview. 

At first glance, the assessment in Table 4 might, wrongly, seem to suggest that it would be 

better to exclude certain applications from telecom infrastructures. We stress, however, that 

this table only considers the application level. As indicated, there may be additional risks as 

a result of embedding the application within the telecom infrastructure (due to correlation of 

risks). An AI application can also be used to mitigate risks. Finally, no weighting is given to 

the scores nor linkage with the negative consequences: the model is not normative with 

regard to the acceptable level of risk nor the scores in Table 4.  

The model does however identify where AI applications with which characteristics can lead 

to new risks. We can also surmise from the table that more attention should be paid to 

validation: risks in AI applications that generally have a limited risk could be further reduced. 

 

 

14 Not surprisingly, the ISO31000:2009 standard provides a broader definition of the concept ‘risk’ as 

[“the effect of uncertainty on the possibility of achieving a company’s objectives”] thus recognising 

that this is not just about the risks that can lead to injuries or damages, but also the risk of not 

achieving objectives that may have serious effects further down the chain. 
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Table 4 Scored risk aspects of current and future AI applications in telecom infrastructures15 

Application 
Opportunities: 
AI-mitigation16 

Autonomy Predictability Damage Scope 

Training Valida-
tion 

Action Trans-
parency 

Deter-
ministic 
& linear 

I/O Action 
frame-
work  

Use Range Redun-
dancy & 
variation 

Power management 
 

1-6 1-10 7 5 5 4 2-5 7 5 5-7 

Radio optimisation 
 

1-6 1-10 7 5 5 4 2 7 5 5-7 

Optical network signal 
amplification 

 
1 1 7 5 5 4 2 7 5 5-7 

Path computation 
 

6-10 1-10 7 5-10 5-9 4 10 7 10 5-7 

Self-organizing networks 
 

6-10 1-10 10 5-10 5-9 4-9 10 10 10 5-7 

Performance monitoring 
 

1-10 1-10 1-4 5-10 2-5 4-9 2 1-4 10 5-7 

Predictive maintenance 
 

6-10 10 1-4 5 2-7 4-9 2 1-4 10 5-7 

Smart handovers 
 

1-6 1-10 7 5 2-5 4 2-5 7 7 5-7 

SDN/NFV 
 

6-10 1-10 10 5-10 2-9 4-9 10 10 10 5-7 

Optical network  
non-linearity mitigation 

 

1-6 1 7 5 2-5 4 5 7 4 5-7 

Bandwidth slicing /  
Resource allocation 

 
6-10 1-10 7 5-10 2-9 4-7 5 7 5 5-7 

Virtual topologies 
 

6-10 1-10 10 5-10 2-9 4-9 10 10 7 5-7 

Anomaly detection / ma-
licious traffic detection 

 

10 10 10 10 10 4-10 2-5 10 5-10 5-7 

Dynamic spectrum  
application 

 
6-10 1-10 7 5-10 2-9 4-9 7-9 7 7 5-7 

 

15 The cells are coloured as follows: green: 1 to 4, orange: 5 to 7, pink: 8 to 9, red: 10. In each range, the last applicable colour in the series is used. 

16 The column "Opportunities: AI Mitigation" indicates whether AI is specifically used in this application to mitigate other non-AI risks. 
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4.3 Tools 

The Dutch Radiocommunications Agency could use various tools to reduce the additional 

risks of applying AI in telecom infrastructures: 

• Information and awareness raising. Thanks to campaigns in and beyond the telecom 

sector, operators and users have become aware of the additional risks posed by AI-based 

systems. Not only can both groups consider mitigating risks, a dialogue can also be 

initiated to align the levels of services and objectives with the needs of end users. 

• Requirement for transparency. Operators can be required to provide insight into the 

use of AI in the network and the way risks are mitigated. The supervisory body could 

propose a model or format for this. This "risk label" makes it clear to end users whether 

the network is suitable for the relevant application.  

Is certification a guarantee for transparency? 

Demands for products are made in many sectors outside AI. In these cases, the manufac-

turer endorses through a statement (a “supplier declaration of conformity”) that the 

product meets the requirements. IBM researchers argue that a similar statement or certi-

fication could be used to improve the reliability of AI. [14]  

The proposed method would assess the aspects of fairness (and balance in the algorithm), 

explainability (of the results), robustness (including non-linear effects) and lineage (origin 

of training data). The manufacturer would have to complete a comprehensive question-

naire on the product. 

 

• Facilitate risk analysis and mitigation. The supervisory body could facilitate 

knowledge sharing about the risks of AI applications in telecom infrastructures. This 

could be in the form of organizing a dialogue between the various operators. The super-

visory body could also speak to individual parties to ascertain ongoing developments and 

how risks are addressed. 

• Develop criteria. The supervisory body could develop or designate criteria regarding 

the use of AI in telecom infrastructures. These could be generic criteria (how to deal with 

training data, control of autonomous systems, et cetera) or specific criteria associated 

with certain applications. Various initiatives have been instigated internationally to es-

tablish criteria (see [46]). 

• Establish process requirements for operators. The supervisory body could require 

operators to establish processes for mitigating additional AI risks, for example by stipu-

lating certain checks or a degree of validation/transparency. 

• The European Commission is proposing and supporting proposals for the 'acti-

vation' of additional obligations for telecom peripherals. As indicated above, the 

European Commission could adopt a directive to establish additional requirements that 

help prevent the harmful effects of using AI in peripherals.  

The above tools can be used at the systemic level. This is about providing information or 

establishing transparency requirements at a functional level, related to telecom infrastruc-

ture values. 

These tools can also examine specific risk characteristics of AI applications at the application 

level.  Table 5is an overview of what we consider logical efforts. The 'light' instruments are 
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probably most effective if they focus on specific risk characteristics. Other 'heavier' tools like 

setting standards or process requirements have a broader scope. 

Table 5 Tools and risk-enhancing characteristics of AI applications in telecom infrastructure 
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5 Conclusions 

In this section we answer the research questions that were central to this study (see §1.2). 

5.1 Response to the main question 

What are the current and future risks of applying AI in the telecom sector? And 

how can the Dutch Radiocommunications Agency mitigate these risks? 

AI applications have specific characteristics that can pose risks when they are used in tele-

com infrastructures. The extent of autonomous learning but also the unpredictability, action 

framework and sphere of influence relating to AI application determine the probability and 

impact of additional risks. 

Alongside the additional risks of using AI applications in telecom infrastructures, there are 

(still) conventional risks relating to information security during the entire lifecycle of an AI 

application: planning, data collection, training, testing, validation and operations. We also 

see that AI can add specific value for mitigating risks. 

Various AI applications interact with each other, with people, with ‘normal’ automation and 

possibly the outside world. It is therefore important to assess how AI is applied in the telecom 

sector at a systemic level. We have to consider the ultimate use of these applications that 

are based on telecom infrastructures, and the level of service they require from the infra-

structure. 

The Dutch Radiocommunications Agency has various tools at its disposal to mitigate the risks 

of AI applications in the telecom sector: information provision and awareness raising, stipu-

lating transparency, facilitating risk analysis and mitigation, developing criteria and setting 

process requirements. At European level, additional requirements could be activated for pe-

ripheral equipment. 

As starting point, we recommend using tools at a systemic level. There are specific tools for 

dealing with certain AI risk factors. Broadly speaking, there will have to be a social debate 

about the desirable level of telecom infrastructures’ services. 

This research has adopted a specific definition of AI to study its application in the telecom 

sector. It is conceivable that the conclusions are also relevant in a broader sense for use in 

autonomous, self-learning and data-driven applications. In the Dutch Radiocommunications 

Agency’s other application domains, there are potentially similar developments and risks in 

the field of AI. 

5.2 Responses to the subquestions 

What does the application of AI look like now in the telecom sector and other sec-

tors that make use of digital connectivity?  

In the context of telecom infrastructure, AI involves using algorithms based on deep learning, 

trained using large amounts of data, to automate tasks that could previously only be per-

formed (properly) by humans. 

Nowadays we see that most applications of AI in telecom infrastructures involve the optimi-

zation of specific parameters. These are strictly defined applications. It is not always clear if 

what manufacturers call "AI" actually means using algorithms based on deep learning and 

trained in large amounts of data. After all, algorithmic optimization has been used in telecom 

infrastructures for many years. 
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What developments are envisioned in the coming five years for applying AI in the 

provisioning and use of digital connectivity?  

Looking at the coming five years, we see AI applications becoming more and more advanced. 

A vision shared by a number of suppliers of telecom equipment is that AI will be able to 

control entire telecom networks. Although it is questionable whether this can happen (en-

tirely) in five years, their vision is definitely one we can anticipate. 

 

What are the risks regarding availability, authenticity, integrity, trust, transpar-

ency and  predictability in the various sectors as a result of the current and future 

use of AI?  How do we weigh up the risks to the various interrelated aspects in a 

risk model for digital connectivity?  

AI applications have certain characteristics that lead to additional risks for telecom infra-

structures. Based on a risk model, we can assess these risks and the characteristics are 

related to the following aspects of AI:  

• The extent of autonomous learning and implementation of AI. If this extent is 

considerable, the likelihood of risk events increases. A significant parameter is whether 

the AI application is controlled by people or by rules. 

• The extent of the AI application’s predictability. If the models are non-deterministic 

or highly non-linear, it is more complicated to assess whether an application will work 

well in all situations. One influential factor is the type of data used and if it can be ma-

nipulated. 

• The AI application’s action framework. If the AI application has a highly limited 

effect on telecom infrastructures, this restricts the impact of a risk event. An application 

with a wide operating framework has a potentially greater impact. 

• The AI application’s sphere of influence. An application operating at a central level 

and controlling a telecom infrastructure is more prone to risk than an application that 

optimises a specific parameter at a low level. 

Considering the risks of AI applications in isolation paints a limited picture of the societal 

risks (as well as advantages) of implementing AI in telecom infrastructures. At the systemic 

level, the following factors affect the risks: 

• Interaction between AI applications and other systems. We also discussed this at 

application level in paragraph 3.2 as correlation of probability and/or effect. 

• Replacing humans with AI. Having people carry out tasks involves risks, and these 

can be higher or lower with an AI application. This study does not chart the risks involved 

with human activities in telecom infrastructures. The model we presented in 3.2 can be 

used to assess the risks of substituting with AI in order to inform the decision whether 

or not to implement a human-replacement AI application. 

• Implement AI applications to mitigate risk. At a systemic level, AI applications can 

contribute to lowering the level of risk, for example through faster detection of problems 

or attacks, and by helping to find causes and solutions. 

• Cyber (in)security of AI applications. AI applications are of course also subject to 

cyber threats and associated security risks. These risks may increase, because training 

AI applications involves bringing together large amounts of (sometimes sensitive) data. 
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Finally, no weighting is given to the scores nor linkage with the negative consequences: the 

model is not normative with regard to the acceptable level of risk. The model does identify 

where and what type of AI application with which characteristics can lead to new risks. 

How can the Dutch Radiocommunications Agency as supervisory body and imple-

menting organization mitigate these risks? 

The Dutch Radiocommunications Agency has various tools at its disposal to mitigate the risks 

of AI applications in the telecom sector: providing information and raising awareness, stipu-

lating transparency, facilitating risk analysis and mitigation, setting standards and process 

requirements. As starting point, we recommend using tools at a systemic level. There are 

specific tools for dealing with certain AI risk factors. Broadly speaking, there needs to be a 

social debate about the desirable level of telecom infrastructures’ services. 
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Corine van Pinksteren Regulatory Officer KPN 

Sacha van der Wijer Head of Advanced Analytics KPN 

Chris Molanu Lead AI KPN 

Winifred Andriessen Director Advanced Analytics  KPN 

Simone Van Ginhoven Regulatory Officer VodafoneZiggo 

Aziz Mohammadi Director Advanced Analytics VodafoneZiggo 

Michiel van Rijthoven Lead data scientist VodafoneZiggo 

Frank van Berkel Senior regulatory affairs counsel T-Mobile 

Miruna Anastasoaie Lead AI  T-Mobile 

Steven Latré Professor Computational Science & 
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