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A B S T R A C T   

In the race to achieve climate goals, many governments and organizations are encouraging the local development 
of Renewable Energy Technology (RET). The spatial innovation dynamics of the development of a technology 
partly depends on the characteristics of the knowledge base on which this technology builds, in particular the 
analyticity and cumulativeness of knowledge. Theoretically, greater analyticity and lesser cumulativeness are 
positively associated with more widespread development. In this study, we first empirically evaluate these re
lations for general technology and then systematically determine the knowledge base characteristics for a set of 
14 different RETs. We find that, while several RETs (photovoltaics, fuel cells, energy storage) have a highly 
analytic knowledge base and develop more widespread, there are also important RETs (wind turbines, solar 
thermal, geothermal, and hydro energy) for which the knowledge base is less analytic and which develop less 
widespread. Likewise, the technological cumulativeness tends to be lower for the former than for the latter 
group. This calls for regional and country-level policies to be specific for different RETs, taking for a given RET 
into account both the type of knowledge it builds on as well as the local presence of this knowledge.   

1. Introduction 

The widespread development and use of Renewable Energy Tech
nologies (RETs) is an essential part of the transition towards a carbon- 
free society (IPCC, 2014). The ability of a country or region to partici
pate in the development of a technology not only depends on the locally 
available knowledge and capabilities (Li et al., 2020), but also on the 
characteristics of the knowledge base of that technology. More specifically, 
Binz and Truffer (2017) argue that it is typically easier to enter knowl
edge fields with a more global (and ‘footloose’) knowledge base when 
compared to knowledge bases that are more local (and ‘sticky’). These 
characteristics of the knowledge base have been linked to different 
modes of knowledge production; global, footloose knowledge to a ‘Sci
ence-Technology and Innovation (STI) mode’ observed in science-based 
industries that lean very much on analytical knowledge, and local, sticky 
knowledge bases to a ‘Doing, Using and Interacting (DUI) mode’ 
observed in engineering-based industries that lean very much on syn
thetic knowledge (Jensen et al., 2007; Asheim et al., 2016). RETs may 
thus differ in the extent to which their development spreads over 
countries or regions, i.e., the mobility of their knowledge base. Where 
the development of some RETs may take place in STI-mode, widespread 
and expanding, the development of other RETs may take place in 
DUI-mode, concentrated and difficult to relocate. This has implications 

for countries that seek to move closer to the knowledge frontier through 
technology and R&D investments as this may be easier for more foot
loose technologies (Keller, 2004). Understanding the knowledge base 
characteristics of renewable energy technologies—in particular the 
knowledge dimensions relating to the spatial dynamics of 
innovation—is thus pivotal input for targeted and evidence-based 
renewable energy policies. 

Earlier studies analyzing RETs as a single technology class find that 
RETs on average build more on analytical and geographically distant 
knowledge than other technologies (Ocampo-Corrales et al., 2020), and 
that they benefit greatly from knowledge flows transcending national 
borders (Noailly and Ryfisch, 2015; Garrone et al., 2014). However, 
recent studies at the more detailed level of individual technologies find 
considerable heterogeneity in the extent to which RETs build on 
analytical knowledge (Persoon et al., 2020; Hötte et al., 2020). For 
example, the science dependence of some RETs, such as wind turbines, is 
relatively low, and closer to fossil fuel-based energy technologies, 
whereas photovoltaics and non-fossil fuels are characterized by a high 
science dependence. Similar variations have been observed in other 
dimensions of the knowledge base that may affect the place-dependence 
of RETs such as the cumulativeness (Persoon et al., 2021), which is 
associated with greater geographical concentration of innovative ac
tivities (Malerba et al., 1997; Breschi et al., 2000). Building on the 
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framework outlined by Binz and Truffer (2017), we systematically 
investigate these different characteristics of the knowledge base of RETs 
in order to assess whether these technological are more local or global in 
nature. More specifically, we map analyticity, cumulativeness and 
knowledge mobility for the knowledge base of 14 different RETs. 

The remainder of this paper is structured as follows. In Section 2 we 
discuss the theoretical background of the mentioned knowledge di
mensions and our expectations for the different RETs. Then in Section 3 
we explain how we measure the knowledge dimensions and distinguish 
the different RETs. Subsequently, we report our main observations in 
Section 4, discuss some deeper implications and shortcomings in Section 
5 and end with a number of conclusions and policy recommendations in 
Section 6. 

2. Theory 

The process of knowledge creation and innovation in a certain 
technology depends for an important part on characteristics of the body 
of knowledge on which this technology builds (Asheim and Coenen, 
2005; Breschi et al., 2000), henceforth referred to as the ‘knowledge 
base’ of a technology. In the following, we will discuss three dimensions 
of the knowledge base which can theoretically be linked to spatial dy
namics of innovation: the analyticity (Section 2.1) the cumulativeness 
(Section 2.2), and the knowledge mobility (Section 2.3). We then discuss 
our expectations for these dimensions for the different RETs (Section 
2.4). 

2.1. Analyticity of knowledge 

Knowledge bases are described to consist of three types of knowl
edge: analytic, synthetic, and symbolic knowledge (Asheim and Coenen, 
2005; Moodysson et al., 2008). In this context, analytic knowledge is 
understood to be science-based, created in deductive processes based on 
formal models. Synthetic knowledge is understood as 
engineering-based, created through the application of existing knowl
edge or through inductively combining existing knowledge. Finally, 
symbolic knowledge is characterized as cultural or artistic knowledge.1 

As the knowledge base of technologies often contains multiple types of 
knowledge, it is more instructive to think about the extent to which it is 
analytic as a spectrum or a scale. In this line of thinking, we define the 
analyticity of a knowledge base as the extent to which it consists of 
analytic knowledge. 

The analyticity of knowledge has been associated with several other 
theoretical dimensions of knowledge. First, where analytical knowledge 
is associated naturally with basic research, i.e. research aimed at truth- 
finding, synthetic knowledge is associated with applied research, i.e 
research aimed at solving practical problems (Bentley et al., 2015; 
OECD, 2015). Technologies that strongly depend on analytic knowledge 
are therefore understood to have stronger ties with the natural sciences. 
While closely related, basic and analytic (or applied and synthetic) 
cannot be considered synonyms: basic research may occasionally pro
duce synthetic knowledge, and vice versa. Second, and closely related, 
where analytic knowledge is universal and theoretical, synthetic 
knowledge is context-specific and practice related (Moodysson et al., 
2008). It is therefore expected that it is more difficult to work with 
synthetic knowledge outside the context in which it was developed, that 
is synthetic knowledge is stickier and place dependent. Third, analytic 
knowledge is often associated with codified knowledge and synthetic 
knowledge with tacit knowledge. However, here too, there are certainly 
exceptions. Not all published work is easy to fully understand or 
reproduce without the aid of those that produced the work. Authors 
have therefore argued that there sometimes is a tacit element to analytic 

knowledge as well (Moodysson et al., 2008). 

2.2. Technological cumulativeness 

Knowledge bases can also be characterized by their ‘technological 
cumulativeness’, the idea that today’s technologies are developed by 
building on the insights from yesterday’s technologies and will them
selves be used to develop the technologies of tomorrow (Trajtenberg 
et al., 1997; Breschi et al., 2000). Perspectives on the exact meaning of 
technological cumulativeness however vary, for an overview of this 
discussion we refer to (Persoon et al., 2021). In this work, we understand 
a technological development to be cumulative when a later technolog
ical result depends on an earlier technological result. In the context of 
technological knowledge, we broadly interpret this dependency as the 
usage, modification or improvement of earlier ideas. In this line of 
thinking, we understand the knowledge base of a technology to be more 
cumulative when the developments in this technology are more cumu
lative. This allows us to define the cumulativeness of a technology as the 
extent to which developments within this technology are cumulative. In 
other words, the more a technology builds on its earlier developments, 
the greater its cumulativeness. 

Technological cumulativeness is often mentioned as a defining 
characteristic of a technological regime, which is a description of the 
relevant environment or circumstances for companies and organizations 
to innovate (Nelson and Winter 1977; Breschi et al., 2000). When a 
technological regime is characterized by high cumulativeness, estab
lished parties largely dominate innovative activities and it is relatively 
hard for new parties to enter. Highly cumulative technologies allow 
firms or organizations to gain absorptive capacity through learning and 
specialization (Cohen and Levinthal, 1990). Within a technological 
regime, therefore, greater cumulativeness is associated with a greater 
appropriability of innovation and a greater geographical concentration 
of innovative activities (Malerba and Orsenigo, 1996; Malerba et al., 
1997). 

In an earlier contribution, where the cumulativeness was explicitly 
approached as the extent to which a technology builds on its earlier 
developments, we established that the cumulativeness of a technology 
increases approximately linearly with the size of its knowledge base, at a 
technology-specific rate (Persoon et al., 2021). Especially when cumu
lativeness is compared across technologies, this suggests that next to 
considering the cumulativeness of a technology, it will be useful to 
consider the rate at which the cumulativeness increases, i.e., the 
cumulativeness relative to the size of the knowledge base. 

When cumulative developments stretch over longer periods of time, 
the products associated with a technology tend to become ‘more com
plex’, meaning that the number of interrelated (functional) parts of a 
product architecture increases. Technological complexity is therefore 
often associated with greater cumulativeness. The complexity of tech
nologies is in the literature however mostly approached anecdotally or 
on a case-to-case basis, as there is no general agreement on a single 
objective measure for complexity (Vaesen and Houkes, 2017). 

2.3. Knowledge mobility 

Where some types of knowledge travel easily from one place to 
another, other types are bound to a certain location. In order to inves
tigate this dimension of knowledge, we define the knowledge mobility as 
the extent to which knowledge travels geographically. By geographical 
traveling, we mean that knowledge developed in one location is subse
quently used or applied in another location, where the two locations are 
separated by a geographical distance. High knowledge mobility then 
corresponds to knowledge that travels with ease to more distant loca
tions, i.e., ‘footloose knowledge’. Low knowledge mobility corresponds 
to Knowledge that travels less easily, i.e. ‘sticky knowledge’. A highly 
mobile body of knowledge is thus expected to travel farther, in other 
words, we expect mobile knowledge to be more widespread (or less 

1 In this research we will mostly focus on the distinction between analytic and 
synthetic knowledge. 
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concentrated) than sticky knowledge. 
Knowledge bases characterized by greater analyticity are expected to 

be more mobile (or ‘footloose’) (Asheim et al., 2011; Herstad et al., 
2014). A motivation for this first expectation is the universality and 
theoretical nature of analytic knowledge, which almost per definition 
implies time, location, and application independence. The context 
specificity and practical nature of synthetic knowledge on the contrary 
make it more time, location and application bound. Another motivation 
is the supposed association with codified knowledge: what is written 
down travels easier than know-how fixed in the minds of experts 
(Lundvall and Johnson, 1994; Gertler, 2003). As mentioned earlier 
though, this association is also criticized. These motivations also count 
when the causality is reversed: when innovative activities are fixed and 
concentrated geographically, there may be less need to formalize or 
rationalize findings because knowledge is communicated orally, devel
oped during collaboration and hence may remain largely tacit and 
fragmented. A gradual shift towards knowledge more synthetic in nature 
is thus expected when engineers collaborate in close vicinity of one 
another. Likewise, when collaborators are forced to communicate their 
results at a distance, it may stimulate them to formalize or rationalize 
their implicit ideas or intuitions. 

Knowledge bases characterized by higher cumulativeness are ex
pected to be stickier (Herstad et al., 2014). A motivation for this second 
expectation is the expected greater geographical concentration of 
innovative activities in technological regimes characterized by high 
cumulativeness. With greater geographical concentration, we expect the 
development to be less widespread and hence to travel shorter distances. 
Note that this relation too can be reversed, namely that the knowledge is 
concentrated because it is sticky. Another motivation for this second 
expectation comes from the association between cumulativeness and 
technological complexity: technologically complex knowledge does not 
travel well (Balland and Rigby, 2017). Working with or improving a 
complex system from a distance is challenging, because it becomes more 
difficult to experiment or interact with the system. 

2.4. Knowledge dimensions of RETs 

In this research, we aim to investigate how the knowledge di
mensions vary for different Renewable Energy Technologies (RETs). 
While a ‘technology’ can be approached or characterized from many 
different angles, we will in this contribution largely focus on the 
knowledge properties of technologies, hence approaching the different 
RETs as distinct bodies of knowledge. The knowledge properties may 
cover various aspects of the technology, for example, how the technol
ogy operates or how it is constructed. While the purpose of the various 
RETs largely coincides (enable the generation of renewable energy), the 
renewable energy sources that the various RETs exploit (and thus their 
working principles) fundamentally differ. Following the International 
Renewable Energy Agency (IRENA), we distinguish between 
geothermal, hydropower, ocean, wind, solar thermal, solar photovol
taic, and bio-energy (IRENA, 2018). In addition, we include a number of 
enabling technologies allowing for the storage of energy such as 
hydrogen technology, and three energy-related technologies that are not 
entirely renewable yet may help reduce CO2 emissions: nuclear energy, 
carbon capture & storage (ccs), and clean combustion. We will provide a 
more precise list of the individual RETs in the next section. 

Earlier contributions have indicated that RETs generally build 
strongly on scientific knowledge, suggesting a highly analytic knowl
edge base (Ocampo-Corrales et al., 2020). In agreement with this 
finding, innovative activities related to RETs are observed to take place 
on ever-larger geographic scales (Noailly and Ryfisch, 2015; Garrone 
et al., 2014). At the same time the knowledge bases are known to vary 
greatly across different RETs (Barbieri et al., 2020) and across energy 
technology in general (Nemet, 2012). More specifically, we know there 
is a large variation across RETs in the extent to which the knowledge 
base is science-based (Persoon et al., 2020; Hötte et al., 2020). Where 

photovoltaics, non-fossil fuels and to some extent fuel-cells and 
hydrogen technology were found to be more science-based, wind tur
bines, hydroelectric and geothermal energy were found to be less 
science-based. The more a RET depends on science, the more analytic its 
knowledge base, the greater a knowledge mobility we expect to observe 
for these technologies. 

While the development of different RETs has been studied in 
numerous contributions, it appears that the current literature lacks a 
systematic comparison of the cumulativeness across different RETs. 
Even though the size of the knowledge base varies across RETs, this does 
not automatically translate to a similar variation in cumulativeness 
(Persoon et al., 2021). The closely related technological complexity 
however does appear to vary largely across RETs. Interpreting a larger 
technological complexity for systems with many interdependent parts, 
RETs such as wind turbines, geothermal energy, nuclear fission, and 
energy from sea are identified as rather complex (Huenteler et al., 
2016), more complex than photovoltaics and non-fossil fuels.2 The 
variation in technological complexity suggests there may be large 
variation across RETs in cumulativeness too (though this needs empir
ical validation). As the knowledge bases characterized by high cumu
lativeness tend to be stickier, we expect the higher cumulativeness RETs 
to show a lower knowledge mobility. Taking a slightly different 
perspective, Binz, Tang, and Huenteler distinguish between ‘complex 
engineered systems for specialized users’ and ‘standardized 
mass-manufactured goods’, wind-turbines again being an example of the 
former and household energy storage systems, stationary fuel-cells, and 
photovoltaics an example of the latter (Binz et al., 2017). Based on their 
findings about photovoltaics, they expect the life-cycle dynamics of the 
latter group to be more ‘spatially fluid’ than the former. 

To summarize, we expect to observe a greater knowledge mobility 
for RETs with a stronger dependence on science and RETs characterized 
by lower cumulativeness. 

3. Methodology 

This section presents the methods used to measure analyticity, 
cumulativeness, and knowledge mobility for RETs. First, we discuss our 
data and present indicators for the knowledge dimensions. Subse
quently, we discuss our selection of various RETs and present some 
descriptive statistics. 

3.1. Patents 

Earlier approaches to measuring the analytic-synthetic knowledge 
distinction were often based on data from questionnaires or professional 
occupations (Moodysson et al., 2008; Plum and Hassink, 2012; Martin, 
2012). While useful, these data are largely an indirect measure of 
knowledge characteristics, because they are based on the characteristics 
of the people that use or produce the knowledge, instead of the 
knowledge itself. In this contribution, we aim to directly measure the 
knowledge characteristics by studying codified forms of knowledge, 
more specifically, patent data. 

Patent data directly represent technological knowledge, containing a 
wealth of detailed information about both the technological content as 
well as the inventor or applicant. Furthermore, the citations in patents, 
both to other patents and scientific literature, to some extent allow us to 
proxy knowledge connections and flow. While patent data offer a unique 

2 In some cases the technological complexity varies with different applica
tions of a technology. For example for solar thermal energy, the systems in 
domestic use are limited to elements that efficiently capture and store heat, and 
are therefore relatively simple, whereas the systems used in power plants are 
typically larger, contain more different elements, and have the additional fea
tures of concentrating the heat and transforming it to electric power, making 
these systems far more complex. 
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opportunity to quantitatively study novel and relevant technological 
knowledge development, there are also some limitations. Not all tech
nology is patented and not all patents represent relevant technological 
developments. While acknowledging these disadvantages, we believe 
that for the purpose of understanding RET development there is a great 
potential for patent data. 

A possible criticism of the usage of patent data to proxy the analytic- 
synthetic distinction is the supposed association with the codified-tacit 
distinction: as patents are codified knowledge, we risk observing ana
lytic knowledge only. However, as mentioned earlier, the association 
with codified-tacit distinction is also criticized, and we strongly believe 
that patents, a key element of engineering practices, may equally well 
contain a large degree of synthetic knowledge. Our approach is, there
fore, that within codified knowledge, there may be different degrees of 
analytic knowledge. More specifically in the context of technological 
knowledge, the more a body of codified knowledge can be associated 
with scientific activity, the greater we will interpret its degree of ana
lytic knowledge. 

Finally, we shortly comment on the geography of patents. In this 
research we will do a separate analysis for patents from the EPO (Eu
ropean Patent Office) and the USPTO (United States Patent and Trade
mark Office), henceforth ‘EP patents’ and ‘US patents’ respectively. 
There are two reasons for this choice. First, different patent offices, but 
in particular EPO and USPTO, have institutionalized different rules for 
citation, hence limiting the analysis of knowledge connections to one 
patent office may give biased results. Second, an applicant files a patent 
with an office if there is market potential in the geographical jurisdiction 
of that office. As we are interested in the worldwide geography of 
innovation, we do not want to limit the analysis to a single geographical 
jurisdiction. 

3.2. Indicators 

For the analysis of analyticity, we will mostly use the scientific 
character of this type of knowledge. To proxy for a given technology the 
dependence on science and the scientific content of the knowledge base 
we define the following indicators:  

● The science dependence(sd) of a technology is defined as the average 
number of references to scientific literature per patent. A reference in 
a patent to a scientific source can be interpreted as a dependency 
link, suggesting that scientific knowledge was somehow relevant in 
the content of the patent. The more scientific sources a patent 
therefore refers to, the more we expect it to be science-based. For that 
reason, we take the science dependence as an indicator of analytic 
knowledge.  

● The science dependence fraction(sdf) of a patent is defined as its 
number of references to scientific literature divided by its total 
number of references. To obtain the sdf of a technology, we take the 
sdf of each patent in that technology and take the average. Hence 
where the sd is based on the absolute number of references, the sdf is 
based on the relative number of references, thus taking into account 
variation across patents and technologies in the number of refer
ences. A similar indicator was earlier used in (Hötte et al., 2020, 
2021).  

● The university fraction(uf) of a technology is defined as the number 
patents in that technology for which the inventor or applicant is 
university3 affiliated divided by the total number of patents in that 
technology. When the inventor is affiliated with a university, we 
expect the patent to be based more on scientific knowledge than the 
average patent from non-scientific organizations. We, therefore, take 
the university fraction to be an indicator of analytic knowledge. 

To proxy the cumulativeness we will use  

● The internal dependence(id) of technology is defined as the average 
number of internal references per patent. An internal reference is a 
reference in a patent to a patent within the same technology, which 
can be interpreted as a dependency link from the technology to itself. 
Cumulativeness can be interpreted as the extent to which a tech
nology builds on itself. This indicator was earlier used in (Persoon 
et al., 2021). For an approach based on general references, we refer 
to (Apa et al., 2018).  

● The internal dependence fraction(idf) of a patent is defined as its 
number of internal references divided by its total number of patent 
references.4 To obtain the idf of a technology, we take the idf of each 
patent in that technology and take the average. Hence where the id is 
based on the absolute number of references, the idf is based on the 
relative number of references, thus taking into account variation 
across patents and technologies in the number of references.  

● The relative internal dependence(rid) of a technology is defined as the 
internal dependence of that technology relative to its total number of 
patents, or equivalently, the number of internal references per patent 
squared. As explained earlier, the internal dependence tends to in
crease linearly with the number of patents. When we compare 
technologies with a different number of patents or when we are 
interested in the rate at which the cumulativeness increases, it is 
therefore useful to additionally consider the cumulativeness per 
patent. 

For the knowledge mobility we define the following indicators:  

● The inter-patent distance(ipd) of a technology is defined as the 
average geographic distance between each pair of patents within that 
technology. From the inventor or applicant addresses in patents we 
can create an overview of the approximate5 locations of inventing. 
The mutual distances between patents can thus be used to proxy the 
geographical spread of inventing in a certain technology.  

● The reference distance(rd) of a patent is defined as the average 
geographic distance between that patent and the (set of) patent(s) it 
refers to.6 The reference distance of a technology is defined as the 
average reference distance per patent. Where the inter-patent dis
tance proxies the geographical spread, it does not directly proxy the 
possible knowledge flow between distant places. With the reference 
distance we therefore additionally consider the kilometers covered 
by references to obtain a better estimate of the actual movement of 
knowledge. Note however that the reference distance also includes 
references to other technologies, thus to some extent also measuring 
the knowledge flow of other technologies.7 

Note that all of these indicators can be determined for technologies 
(i.e. groups of patents) and a selection of these indicators can also be 
determined on the level of individual patents. In the first part of our 
analysis, we will use the indicators acting on the level of individual 
patents to establish a baseline and demonstrate more general relations 
between analyticity, cumulativeness and knowledge mobility (where 
the patents are not necessarily confined to the considered technologies). 

3 As we will see later it more correct to speak of university-related 
organizations. 

4 Alternatively, we can also include the references to scientific and/or other 
sources in this total. However, in this contribution, we choose to define it as a 
fraction of patent references only, so that we can consider it to be independent 
from the sdf.  

5 That is approximate, as there is no guarantee the actual process of inventing 
took place at the mentioned address.  

6 We take the reference distance of a patent which does not refer to any other 
patent to be undefined.  

7 Excluding the references to other technologies can be demonstrated to 
result in an indicator very closely related to the inter-patent distance. 
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This analysis is mainly based on data from Patstat (spring 2020 
edition) focusing on European and US patents. As a consequence, there 
are a number of subtleties involved with the actual measurement of the 
indicators:  

1. We count as a ‘patent’ each unique DOCDB patent family, where an 
‘EP patent’ represents each unique family with an EPO patent 
application and likewise for ‘US patent’ but then for USPTO 
applications.8  

2. To identify the references to scientific literature we use the type ‘s’ 
classification of the cited non-patent-literature (NPL), which signals 
articles in journals and periodicals. Where in Patstat the NPL appears 
to be classified rather well for EP patents, for the US patents the large 
majority of NPL, probably due to a lacking of rich structure in ref
erences, is classified in the general category ‘a’ (abstract of no spe
cific kind). To obtain a better indication of which fraction of the cited 
NPL is actually scientific, we use the database by Marx and Fuegi 
(2020) which links the references in patent applications to scientific 
publications, and is accurate for US patents.  

3. To identify the inventors or applicants affiliated with a university we 
use the automatized sector allocation in Patstat of persons (Mager
man et al., 2006; Van Looy et al., 2006). This classification however 
allows an applicant to be allocated to multiple sectors. For the uni
versity fraction, we include each patent where at least of one the 
allocations is the ‘UNIVERSITY’ sector. We therefore also include 
organizations closely related to the university, making it more cor
rect to speak of ‘university-related organizations’. 

4. To link the patents to geographical coordinates we use the ‘Geo
coding of worldwide patent data’ database (shortly ‘Geocoding’) 
constructed by Rassenfosse, Kozak, and Seliger (de Rassenfosse et al., 
2019) based on the applicant or inventor addresses. The Geocoding 
database is limited to first filed patent applications, which we linked 
back to patent families using Patstat. This research is based on the 
Geocoding table with inventor addresses. Yet, as the makers of the 
database acknowledge, disambiguation of inventors and applicants 
is generally challenging and a research task on its own. Indeed a 
quick comparison with the table bases on applicant addresses does 
not seem to amount to substantially different results. 

Table 1 
Symbols, CPC codes and total number of patents of selected RETs To the CPC descriptions we added for some technologies a shortname (in brackets). The final 
column indicates the number of EP and US patents of which the family is the same.  

Technology CPC description CPC code EP US in 

patents patents common 

Geothermal Energy Y02E 10/1 495 1088 240 

Hydro Energy Y02E 10/2 1865 6223 1159 

Energy from the sea, e.g. using wave energy or salinity gradient Y02E 10/3 1228 2624 902 

Solar thermal energy, e.g. solar towers Y02E 10/4 5425 11247 3034 

Photovoltaic energy (photovoltaics) Y02E 10/5 14947 31490 12492 

Wind energy (wind turbines) Y02E 10/7 10112 16454 7471 

Combustion technologies with mitigation potential (clean combustion) Y02E 20 4956 7646 3575 

Nuclear fission reactors Y02E 30/3 1337 4325 1038 

Technologies for an efficient electrical power generation, transmission or distribution (electric grids) Y02E 40 2171 4031 1718 

Technologies for the production of fuel of nonfossil origin (non-fossil fuels) Y02E 50 6310 9625 4548 

Energy storage using batteries, capacitors, thermal or mechanical systems. Y02E 60/1 8858 17502 7166 

Hydrogen Technology Y02E 60/3 4029 7307 3220 

Fuel cells Y02E 60/5 3501 7254 3152 

Carbon capture and storage (ccs) Y02C 3791 6297 3091  

8 The Patstat records of USPTO applications are biased to granted patents 
before the year 2000. As our focus is not on the time development we expect 
this to be a minor issue for our purpose. 
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5. The addresses of inventors of EP patents are not necessarily confined 
to Europe, and likewise for US patents and the US. The typical 
reference distance of an EP patent with an inventor from the US 
however structurally differs from that with an inventor from Europe: 
the reference distance is location-specific. While these variations are 
expected to average out when the number of patents in a technology 
is large, this effect may be disproportional for technologies with a 
smaller number of patents. To demonstrate this effect, we determine 
the reference distance from EP patents with US inventors and vice 
versa and compare these to the reference distances of EP (US) patents 
with European (US) inventors in Appendix B. To account for this 
effect, when we determine the reference distance of EP patents we 
sub-select the patents with an inventor in Europe. Likewise, when we 
determine the reference distance of US patents we sub-select the 
patents with an inventor from the US. These sub-selections contain 
for most of the technologies considered the majority of patents. Note 
that, while we sub-select patents based on the location of the in
ventor, the references in these may still be to patents from inventors 
located anywhere in the world. 

3.3. Technology selection and descriptive statistics 

We base our selection of energy generating technologies on the set of 
renewable energy sources identified by the International Renewable 
Energy Agency IRENA (IRENA, 2018), including geothermal, hydro
power, ocean, wind, solar, and bioenergy. As mentioned earlier, these 
energy-generating technologies are complemented with a set of tech
nologies relating to energy storage and a set of technologies that may not 
be considered fully renewable but nonetheless help reducing greenhouse 
gas emissions, such as nuclear energy, clean combustion, and carbon 
capture & storage (ccs). For an overview see Table 1. To identify the 
patents associated with these (partial) RETs we use the Cooperative 
Patent Classification (CPC) used by both EPO and USPTO, or more 
specifically the CPC tagging scheme ‘Y02’ which identifies technologies 

with the potential to mitigate climate change (Veefkind et al., 2012). 
Each of these RETs corresponds then to a collection of patents classified 
on the group or subgroup level in CPC. The various technologies and 
corresponding CPC descriptions are shown in Table 1, including the 
symbols which represent them in later figures. Note that a substantial 
number of EP and US patents are members of the same patent family, 
hence there is a substantial overlap between both data sets. 

In Table 2 we include the descriptive statistics for a number of in
dicators discussed in the previous section. All of these indicators are only 
positive and characterized by distributions skewed towards the value 
zero, which is in line with the observation that the standard deviations 
are of the same order as the averages. The variation across technologies 
is substantial, especially across the analyticity and cumulativeness in
dicators. The science dependence of non-fossil fuels is much higher than 
that of the other RETs. This is in line with earlier findings [42, 22] and 
may be related to the strong link of non-fossil fuels to fields such as 
(Applied) Microbiology, Biochemistry, and Molecular Biology. While we 
will measure and plot the indicator values for non-fossil fuels, we will 
not include this technology in data fits and statistical analysis. 

To explore the geographical distributions of inventive activity in 
RETs worldwide, we use the geographical coordinates to plot the 
number of US patents (using the inventor or applicant address in the 
patents) in a grid defined for each longitudinal and latitudinal half de
gree. We do this for photovoltaics and wind-turbines respectively in 
Figs. 1 and 2. Because the patenting activity is distributed highly un
evenly (a small number of areas producing the majority of patents), we 
chose a coloring following a logarithmic scale. We observe some vari
ation between the figures, Germany and France innovating strongly in 
photovoltaics, while Denmark focusing more on wind turbines. The 
main observation, however, at least on a global scale, is that the 
geographical distributions of innovative activities are fairly similar, 
even for rather different technologies such as photovoltaics and wind 
turbines. In fact in a ranking of countries by the total number of US 
patents, see appendix A, the US, Japan, and Germany are consistently in 

Table 2 
Descriptive statistics of main indicators Note that all presented indicators are averages, the standard deviations are included in brackets. The units of the science and 
internal dependence are in reference/patent. All of the considered indicators are positive values only and highly skewed to zero. As explained earlier in Section 3.2, the 
reference distance is determined for a sub-selection of the patents.  

RET science dependence internal dependence inter-patent distance in km reference distance in km 

EP US EP US EP US EP US 

0.11(0.54) 0.63(3.57) 3.34(3.04) 5.63(8.61) 3284(3546) 4844(3785) 3803(2558) 3117(1714) 

0.10(0.60) 0.11(2.66) 3.19(2.73) 3.14(6.94) 3755(3730) 5654(3732) 4388(2858) 3442(1786) 

0.19(1.93) 0.52(3.21) 3.96(3.54) 6.86(10.51) 3937(3689) 5689(3677) 4375(2529) 3502(1674) 

0.19(1.18) 0.53(3.20) 4.74(3.75) 8.41(18.54) 3953(4046) 5500(3854) 4085(2850) 3427(1808) 

1.85(5.90) 3.12(13.51) 3.88(7.35) 7.09(19.53) 6023(3992) 6285(3984) 5332(2791) 4185(2029) 

0.29(1.29) 0.37(3.49) 3.95(3.14) 6.89(10.30) 4308(3796) 5439(3672) 3451(2495) 3923(1774) 

0.24(1.25) 0.96(6.37) 1.85(1.99) 4.97(17.12) 5392(3895) 5957(3919) 3867(2628) 3683(1927) 

0.26(1.18) 0.66(2.18) 3.06(2.40) 4.18(7.70) 5346(3677) 5814(3774) 4553(3201) 3685(2471) 

0.63(1.63) 1.38(5.47) 2.07(2.05) 3.65(5.02) 5089(3941) 5958(3906) 4526(2831) 3678(2009) 

9.83(65.76) 11.69(47.30) 3.25(4.89) 4.84(9.36) 4527(3837) 5529(3756) 3671(2659) 3475(1837) 

0.71(3.22) 2.03(9.59) 2.11(2.35) 3.53(7.30) 5501(4216) 5579(4333) 4846(2903) 4257(2109) 

1.22(4.52) 2.38(11.80) 2.08(2.41) 3.59(6.08) 5564(3920) 6227(3887) 4735(2684) 3659(1909) 

1.11(3.81) 2.72(9.74) 1.94(2.40) 3.14(6.85) 6176(3926) 5945(4206) 5587(2536) 4130(1958) 

1.01(4.75) 3.44(13.05) 2.52(2.71) 5.75(10.97) 5578(3790) 5732(3812) 4265(2403) 3610(1889)  
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the top 5 for each RET considered in this research (and France for all but 
3 RETs). For EP patents, these countries likewise dominate each top 5. 
Together these four countries account for 76 and 58 respective per
centages of the US and EP patents (for RETs). This is in line with the 
findings of earlier literature considering energy technology in general 
(Bointner, 2014). The uneven distribution is not due to our choice for 
counting at the country level. When instead consider spatial the level 
below countries (corresponding to the ‘name_1’ level in the Geocoding 
database), we again see the same regions or locations recurring: 

California, New York, Tokyo, Bayern and Baden-Württemberg rather 
consistently dominate in the top 10 locations with most patents for each 
considered RET. An important part of the knowledge base development 
of RETs, therefore, appears to take place in a small number of dominant 
areas. Together with the similarity of the worldwide geographical dis
tributions, these are relevant descriptive statistics: it indicates that 
despite the obvious location-boundness of the application of specific RETs 
(hydro energy near rivers, photovoltaics in sunny locations, wind tur
bines near windy locations, etc.), the development of the knowledge 

Fig. 1. Worldwide distribution of photovoltaics US patents based on inventor or applicant address We plot the number of US patents per grid-cell for a grid 
defined for each longitudinal and latitudinal half degree. The scale chosen for the color coding of the cells is logarithmic (see scale-legend). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Worldwide distribution of wind turbine US patents based on inventor or applicant address Similar to Fig. 1, except for adjusting the color scale (the 
maximum is here 241 patents). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Science dependence fraction, reference distance and number of patents We divide the sdf into exponential bins (base 1.25) and determine for each bin 
the average rd (left panel) and the normalized cumulative number of patents (right panel). Note the sdf axes are logarithmic, hence the exponential bin sizes are 
constant in this plot. For sdf bins lower than 0.5 we observe a positive relation between the sdf and rd. 
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base of these RETs still largely occurs in dominant areas which work on 
the development of all RETs at the same time. 

4. Results 

We will start this section by exploring the general relations between 
analyticity, cumulativeness, and knowledge mobility, where we 
consider a general data set of patents. We then focus the analysis on the 
considered RETs, thereby discussing the various relations between in
dicators both qualitatively and quantitatively. Following the first 
expectation in Section 2, we expect to observe a positive relation be
tween analyticity and knowledge mobility. Following the second 
expectation in Section 2, we expect to see a negative relation between 
cumulativeness and knowledge mobility. 

4.1. General relations between knowledge dimensions 

We will first explore some general relations between on the one hand 
the knowledge mobility and on the other hand analyticity or cumula
tiveness of knowledge. We explore these relations using the indicators 
that are defined on the level of individual patents: the science depen
dence fraction (sdf), the internal dependence fraction (if), and the 
reference distance (rd). In the following analysis, we include all EP and 
US patents for which a reference distance could be determined. One 
exception is the analysis of the US sdf: there we include, due to calcu
lation challenges, a random selection of 20 percent of all such patents. 
As explained in Section 3.2, we sub-select those EP patents for which the 
inventors are from Europe and those US patents for which the inventor is 
from the US. To calculate the idf, the internal references are determined 
using within CPC-group references. 

In Fig. 3 we divide the sdf in exponential bins and plot the average rd 
(left panel) and number patents (right panel) for each bin. We observe in 
the left panel that the rd increases with increasing sdf for both EP and US 
patents (though more strongly for EP patents). Not included in this 
Figure are the many patents for which the sdf is zero (7.0 ⋅ 105 EP 
patents and 2.8 ⋅ 105 US patents, respectively 6.4 and 2.0 times the total 
number of EP and US patents in Fig. 3). The average rd of these zero sdf 
patents are 4114 km for EP patents and 3380 km for US patents, which 
are similar values to those in the lowest sdf bins in Fig. 3 and therefore in 
accordance with the observed relation. Even though the reference dis
tance appears to go down for large sdf for both the EP and US patents, we 
note from the right panel that there are relatively few patents with an sdf 
>0.5 (to be precise respectively 4 and 8 percent of the total EP and US 
patents). For the majority of the patents, it therefore counts, in line with 
expectation, that the greater the sdf, the greater the rd. In other words, 
greater analyticity can be associated with greater knowledge mobility. 

In Fig. 4 we divide the idf in bins of constant size and plot the average 
rd (left panel) and the cumulative number of patents (right panel) for 
each bin. We clearly observe that the rd decreases when the idf decreases 
(illustrated also by the linear fits). This is the case almost over the entire 
range of the idf. A minor exception are the US idf values < 0.15. As is 
clear from the right panel, however, there are relatively few patents in 
this range. As the right panel in Fig. 4 illustrates, most of the patents 
have mid-range idf values, although there are relatively many patents 
with idf equal to one (counted in the bin with the largest idf value). As 
the left panel illustrates, the average rd of the patents in this bin are 
however in line with the observed pattern. We therefore conclude, in 
line with expectation, that the greater the idf, the smaller the rd. In other 
words, greater technological cumulativeness can be associated with 
lesser knowledge mobility. 

4.2. Knowledge relations of RETs 

Where in the previous section we discussed the general relations 
between knowledge dimensions based on a general data set of patents, 
we will in the following analyze these relations specifically considering 

the RETs. We will first qualitatively discuss the relation between on the 
one hand a knowledge mobility indicator and on the other hand either 
an analyticity or cumulativeness indicator. Subsequently, we will 
consider these relations more quantitatively, where we determine the 
correlations and estimate some models. 

In Fig. 5 we plot the rd for the sdf for both the EP patents (left) and 
the US patents (right). The main observation for both graphs is a positive 
relationship between both quantities which is well fitted by a linear 
relation. We refer to Table 1 for a legend of the icons and the short names 
of the technologies. The sdf of non-fossil fuels can be observed to be 
exceptionally large, which is, as discussed earlier, not included in these 
and later fits. It is therefore also challenging to compare the rd of this 
technology to the rest. It appears the values of the other technologies do 
allow for comparison however, and in line with expectation, technolo
gies such as wind turbines, geothermal, hydro, solar thermal, and energy 
from sea show relatively low rd, whereas photovoltaics, fuel cells, en
ergy storage, and hydrogen technology show relatively large rd. Nuclear 
fission, ccs, clean combustion, and electric grid technology are some
what in between these two groups. Using Table 1, we note that tech
nologies with a large number of patents (wind turbines, solar thermal, 
photovoltaics, fuel-cells) occur on both ends of the spectrum. It seems 
therefore that sheer numbers of patents, often a proxy for the size of the 
knowledge base, are not sufficient to explain the observed relation.In 
Fig. 6 we instead plot the inter-patent distance (ipd) for the university 
fraction (uf). The positive relation from Fig. 5 remains largely un
changed, the technologies we find upper right (down left) in Fig. 5 also 
tend to be in the upper right (down left) of Fig. 6. This indicates that the 
variation across RETs in the considered knowledge dimensions is 
consistent for the different indicators for these dimensions. A closer look 
reveals some minor variations. The differences between the EP and US 
patents in Fig. 5 are relatively large in particular for wind turbines and 
fuel cells. In Fig. 6, these differences are relatively less. This suggests 
that the ipd indicator may be more uniform between EP and US patents. 
We discuss the rd variations (and in particular those of wind turbines 
and fuel cells) in more detail in a part of Appendix B. Especially for the 
US patents, the uf of nuclear fission and clean combustion is relatively 
low in Fig. 6 as compared to their sdf in from Fig. 5. This suggests that 
the knowledge base of these technologies, while retaining a scientific 
component, is to a lesser extent developed in universities. 

While there are these minor differences, for most technologies the 
overall pattern is in agreement with Fig. 5, again confirming that the 
technologies that build stronger on science also tend to show greater 
knowledge mobility. 

Next, we plot the ipd for the internal dependence (id) in Fig. 7. The 
main observation is a negative relationship between both quantities 
which is rather well fitted by a negative logarithmic relation (note the 
horizontal axis is logarithmic).9 This is in line with the expected nega
tive relation between knowledge mobility and technological cumula
tiveness. The only technology defying this pattern, both for EP and US 
patents but especially US patents, appears to be photovoltaics, which 
despite a relatively large id, shows great ipd. In earlier contribution 
however we already demonstrated that the internal dependence tends to 
increase linearly with the number of patents (Persoon et al., 2021). 
Photovoltaics consists of far more patents than the other RETs (espe
cially for US patents), which possibly explains the exceptional value for 
the internal dependence in this context. 

Alternatively, we may therefore consider the cumulativeness relative 
to the size of the knowledge base, which we measure by the relative 
internal dependence (rid) in Fig. 8. In that figure the value of photo
voltaics indeed shifts both for the EP and US patents to the left, in better 
agreement with its large value for the ipd. We observe a similar shift for 
wind turbines, though to a lesser extent, which is in line with 

9 We may also take the log of the ipd and instead fit a power relation, the 
results will be largely comparable. 
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expectation given its shorter ipd. Other than these changes the pattern is 
largely similar to the one in Fig. 7. 

Finally, note in both Figs. 7 and 8 that the values for non-fossil fuels 
are more or less in line with the rest of the technologies, where earlier for 
the science dependence its values were rather exceptional. This there
fore presents an extra reason for considering both the science depen
dence and internal dependence: an exceptional value for the former 
need not automatically imply an exceptional value for the latter. 

We will not plot all possible combinations between the indicators we 
consider, yet for completeness we include in Fig. 9 the Pearson corre
lation coefficients of each combinations and whether or not this com
bination is statistically significant. We conclude from Fig. 9 that all 
correlation coefficients, most of which are substantial, have the ex
pected sign: all analyticity indicators have positive signs with knowl
edge mobility indicators and all cumulativeness indicators have a 
negative sign with all knowledge mobility indicators. Especially the 
analyticity indicators show strong correlations with the knowledge 
mobility indicators. As expected the correlations between indicators of 
the same knowledge dimension are generally strong. One exception is 

the relative internal dependence (rid), which despite strong correlations 
with knowledge mobility indicators does not correlate strongly with 
other cumulativeness indicators. Interestingly, the rid does not (anti) 
correlate strongly with analyticity indicators either, which suggests its 
relation to the knowledge mobility is to some extent independent of the 
other indicators. We also observe this for internal dependence (id) of the 
European patents. To follow up on this suggestion, we will finally 
consider the possibility to model the knowledge mobility as a linear 
combination of an analyticity indicator and a cumulativeness indicator. 

Again we will not present here all such possible linear combinations 
here in detail, there are simply too many, but instead share our general 
conclusions and include two examples (Table 3). As we only consider 13 
technologies, i.e. 13 data points, it does not make much sense to go much 
further than combinations of 2 variables. We will first discuss this for the 
EP patents and then for the US patents. 

When we model for the EP patents the inter-patent distance (ipd) as a 
linear combination of any given analyticity and any given cumulative
ness indicator, the performance of the model in terms of minimizing the 
residual standard error and maximizing the Pearson correlation squared 

Fig. 4. Internal dependence fraction, reference distance and number of patents We divide the idf into bins of constant size (0.01 for US and 0.02 for EP patents) 
and determine for each bin the average rd (left panel) and the normalized cumulative number of patents (right panel). For the rd linear fits are included, which 
indicate a negative relation between the idf and rd. Because the idf is a fraction, we observe small breaks in the right panel for highly frequent values such as 1/2 and 
2/3. 

Fig. 5. Reference distance for science dependence fraction On the left we display EP patents and on the right US patents. See Table 1 for a legend of the icons. 
Non-fossil fuels is excluded in the linear fit. 
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(R2) is much better than for the case where all this indicators are indi
vidually considered as predictors. One specific example is given in 
Table 3(left panel), where the EP ipd is modeled as a linear combination 
of the sdf and rid. The residual standard error (548.6) is much lower 
than that in a model with only the sdf (662) or the rid (724). The found 
R2 = 0.72, corresponding to a Pearson coefficient of R = 0.85, is also 
greater than the R values in Fig. 9 for ipd-sdf and ipd-rid. When we take 
linear combinations of only analyticity or only cumulativeness in
dicators to model the ipd, this only results in a better model in half of the 
cases. This therefore indicates that it makes sense to consider the 
analyticity and cumulativeness as independent factors relating to the 
knowledge mobility. As Fig. 9 already indicates, the EP patent reference 
distance very strongly correlates with most of the analyticity indicators, 
which is difficult to improve considering extra indicators. For the EP rd, 
we therefore only find very few combinations that present better models 
than the indicators considered individually. 

When we model the knowledge mobility indicators for the US patents 
as a linear combination of indicators we reach similar conclusions. We 

find for both knowledge mobility indicators that any combination be
tween the rid and any analyticity indicator result in a better model than 
when the indicators are considered individually (again judged on the 
basis of the residual standard error and R2). We present one example in 
Table 3 (right panel), where we model the US rd as a linear combination 
of the US sdf and US rid. The found residual standard error (207.4) is 
much smaller than that in a model with only the sdf (251) or only the rid 
(244). Also the found R2 = 0.67, corresponding to R = 0.82, is greater 
than the R values in Fig. 9 for rd-sdf and rd-rid. We note that this is 
largely due to the success of the rid. It is not directly clear why this in
dicator, as compared to the other cumulativeness indicators, performs 
much better for the US patents. At least it underlines the need to consider 
multiple indicators to describe these knowledge dimensions. Only one 
combination (sd & sdf) of either considering only analyticity indicators 
or only cumulativeness indicators can be evaluated as a better model 
than considering the indicators individually. This again indicates that 
especially the combination of a cumulativeness indicator and an 
analyticity indicator results in a better model, thus confirming the 

Fig. 6. Inter-patent distance for the fraction of university patents On the left we display EP patents, on the right US patents. See Table 1 for a legend of the icons.  

Fig. 7. Inter-patent distance for the internal dependence On the left we display EP patents, on the right US patents. Note the horizontal axis is logarithmic. See 
Table 1 for a legend of the icons. 
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earlier assertion that the science and internal dependence are comple
mentary indicators, both relating to the knowledge mobility. 

In sum, while there is considerable variation across different RETs in 
terms of knowledge mobility, this variation is to some extent explained 
by their variation in analyticity and cumulativeness, thus in line with the 
expectations of Section 2. We can distinguish rather consistently a 
collection of footloose RETs (photovoltaics, energy storage and fuel 
cells) characterized by relatively high analyticity and low cumulative
ness, from a collection of sticky RETs (energy from sea, wind-turbines, 
geothermal, hydro, and solar thermal energy) characterized by rela
tively low analyticity and high cumulativeness. 

5. Discussion 

In this research, we established a close relationship between the 
analyticity, cumulativeness, and the knowledge mobility of technology 
in general and in particular for various RETs. In this section, we discuss 
several deeper theoretical aspects and limitations of our approach. 

First, our results suggest that analyticity and cumulativeness are two 
distinct characteristics of a knowledge base, in the same way that 
technological cumulativeness and building on scientific knowledge are 
two distinct mechanisms for technological change. While both the sci
ence dependence and internal dependence strongly relate to the 
knowledge mobility, we find that they are largely independent in
dicators, i.e., that a high value for the one need not imply a low value for 
the other. A comprehensive approach to the mechanisms underlying 

Fig. 8. Inter-patent distance for the relative internal dependence On the left we display EP patents, on the right US patents. Note the horizontal axis is loga
rithmic. See Table 1 for a legend of the icons. 

Fig. 9. Mutual correlations between indicators On the left we display the correlations for EP patents, on the right for US patents. rd = reference distance, 
ipd = inter-patent distance, sdf = science dependence fraction, sd = science dependence, uf = university fraction,idf = internal dependence, id = internal dependence, 
rid = relative internal dependence. Each circle represents a mutual relation, the size and color of which represent the Pearson correlation coefficient. When a cross is 
included the relation is not significant on a 0.1 level. Non-fossil fuels are excluded while determining these correlations. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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knowledge mobility therefore should not be limited to analyticity or 
technological cumulativeness but should instead treat these as 
complementary. 

Second, we emphasize our focus is on technological cumulativeness in 
this research, i.e. studying the relevance of technological knowledge to 
later technological knowledge. This is not to mean scientific knowledge 
is not cumulative: ‘scientific cumulativeness’ should however be studied 
in the context of science building on science. Neither does it imply 
technology does not influence science: where technology provides sci
ence with the necessary instruments, science provides technology with 
the necessary analytical knowledge. 

We can also identify a number of limitations to our research. Our 
focus in this contribution is on the knowledge aspects of technology, 
though we acknowledge that there may be many more factors deter
mining the geographical development of a technology, perhaps most 
importantly the (prospective) market valuation of that technology of 
factors relating to the adoption of that technology (Halleck Vega et al., 
2021). For a more inclusive perspective, we refer to (Binz and Truffer, 
2017). Furthermore, earlier contributions have argued that, while 
geographical distance remains an important or possibly the most 
important metric to measure knowledge mobility (Caragliu and Nij
kamp, 2016), a more comprehensive approach additionally includes a 
number of other metrics, based on, for example, organizational, insti
tutional or cognitive proximity (Boschma, 2005), or variation between 
countries or organizations in terms of environmental policy stringency 
(Corrocher and Mancusi, 2021). Recognizing this criticism, we per
formed additional analyses with alternative distance measures, such as 
the fraction of references staying with a region or country and the 
Herfindahl index of the distribution of patents over regions and coun
tries. In both cases however, the results were challenging to interpret, 
especially since we only considered 13 technologies. Where the fraction 
of references within region or country suggested contrary results for 
regions and countries, the Herfindahl index showed contrary results for 
EP and US patents (and showed some scaling with the number of pat
ents, which further complicated matters). To keep this contribution 
simple, we excluded a detailed discussion of these results. 

6. Conclusions and policy implications 

This paper contributes to the literature on local and global innova
tion systems through a systematic empirical analysis of the extent to 
which Renewable Energy Technologies (RETs) can be characterized as 

sticky or footloose (Binz and Truffer, 2017). It illustrates the relationship 
between the spatial innovation dynamics of technologies and charac
teristics of the knowledge base of these technologies, such as the extent 
to which this knowledge base is analytic (the ‘analyticity’) and the 
extent to which it is cumulative (the ‘cumulativeness’). The tendency of 
technology to be spatially sticky or footloose can be systematically 
approached using the concept of knowledge mobility, that is, the extent 
to which knowledge travels geographically. After empirically confirm
ing, for general technology, the positive relation between analyticity 
and knowledge mobility and the negative relation between cumula
tiveness and knowledge mobility, we investigate these relations in more 
detail for various RETs. We find, in line with theoretical expectations, 
that the RETs with high analyticity, low cumulativeness knowledge 
bases (photovoltaics, fuel cells, energy storage, and hydrogen technol
ogy) show greater knowledge mobility than those with low analyticity, 
high cumulativeness knowledge bases (wind turbines, geothermal, solar 
thermal, hydro energy and energy from sea). We will refer to the former 
group with ‘analytic RETs’ and the latter group with ‘cumulative RETs’. 
Comparing non-fossil fuels to the other RETs is challenging, as its 
dependence on analytic knowledge appears to be exceptionally strong. 

Our findings lead to a number of recommendations for decarbonizing 
strategies and policies. For the transition from general R&D stimulating 
and technology-neutral subsidy schemes to more mission-oriented sci
ence and technology policies, a deep understanding of the knowledge 
characteristics of the considered technology is key. As RET in general 
depends strongly on analytic knowledge, stimulating scientific research 
appears to be an effective and targeted measure to stimulate RET 
development. However, in this work, we have demonstrated that there is 
also substantial variation across different RETs in various knowledge 
dimensions and that this variation across RETs can be used to more 
effectively target the development of these RETs. More precisely, we 
have demonstrated that we can distinguish between analytic and cu
mulative RETs. Where the development of the former allows for easier 
entry and more flexibility in choosing locations, the development of the 
latter may be relatively harder to enter and is limited to locations 
providing the necessary synthetic knowledge. To encourage the devel
opment of analytic RETs in particular, policymakers may focus more on 
strengthening scientific activity. To encourage the development of cu
mulative RETs in particular, policy mixes focusing on system building 
are needed to stimulate the local presence of synthetic knowledge. In 
sum, our results call for policies that are more RET specific, taking into 
account the variation across RETs in various knowledge dimensions, 
which relate predictably to spatial dynamics of innovation. 
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Table 3 
Examples of regression outcomes for linear models We present the results of 
two regressions, one for EP patents (left panel) and one for US patents (right 
panel). On the left, we choose the ipd as the dependent variable and the sdf and 
rid as independent variables, where we also allow a constant term. On the right, 
we choose the rd as the dependent variable instead. Note there are 13 data points 
as we exclude non-fossil fuels.   

Dependent 
variable:  

Dependent 
variable: 

ipd EP patents rd US patents 

sdf EP patents 8548** sdf US patents 3490** 
(2826) (1521) 

rid EP patents − 225,936** rid US patents − 112,047** 
(91,980) (45,023) 

Constant 4726*** Constant 3535*** 
(302) (180) 

Observations 13 Observations 13 
R2 0.72 R2 0.67 
Adjusted R2 0.66 Adjusted R2 0.61 
Residual Std. 

Error 
548.6 (df = 10) Residual Std. 

Error 
207.4 (df = 10) 

F Statistic 12.8*** (df = 2; 
10) 

F Statistic 10.2*** (df = 2; 
10) 

Note: *p < 0.1; **p < 0.05; ***p < 0.01. 
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A. Country ranking by number of patents 

In this appendix we present for each RET the top 5 ranking of countries by number of patents, for EP patents in Table 4 and for US patents in 
Table 5. We observe that the US (US), Germany (DE) and Japan (JP) consistently dominate the top 5 rankings for both EP and US patents. Similarly, 
France (FR) is in all top 5 rankings except for 3 US RET patent rankings.  

Table 4 
Country rankings of EP RET patents We denote the countries by their alpha-2 letter codes and include the number of EP patents.   

1 DE 100 DE 236 US 131 DE 1039 US 2129 DE 1965 US 1051 US 370 DE 386 US 998 JP 1221 US 729 US 623 US 845 
2 US 45 FR 146 GB 98 US 525 JP 1857 US 1058 DE 886 FR 216 US 352 DE 794 DE 1009 DE 487 JP 497 DE 433 
3 CH 26 US 132 DE 82 FR 338 DE 1833 DK 1003 JP 485 DE 145 JP 243 FR 373 US 953 JP 383 DE 312 JP 407 
4 SE 19 GB 11 FR 69 IT 255 KR 848 JP 590 FR 315 JP 115 FR 111 JP 164 KR 508 FR 347 FR 139 FR 326 
5 FR 19 JP 72 NO 55 ES 198 FR 692 ES 451 CH 182 SE 62 SE 98 NL 163 FR 481 IT 101 KR 133 GB 107   

Table 5  
Country rankings of US RET patents We denote the countries by their alpha-2 letter codes and include the number of US patents.   

1 US 450 US 925 US 700 US 3921 US 8154 US 3759 US 2801 US 984 US 1064 US 3037 US 3450 US 2061 US 1890 US 2098 
2 JP 38 JP 159 GB 91 DE 488 JP 4155 DE 1501 JP 740 JP 295 JP 390 DE 395 JP 2894 JP 892 JP 1291 JP 553 
3 DE 34 DE 135 FR 63 JP 367 KR 2318 DK 858 DE 548 FR 196 DE 302 JP 326 KR 1233 DE 492 KR 591 DE 360 
4 CA 33 CA 97 JP 63 ES 167 DE 1679 JP 637 FR 243 DE 155 KR 111 FR 282 DE 788 FR 299 DE 312 FR 311 
5 IL 21 FR 95 DE 47 FR 166 FR 627 ES 392 CH 153 SE 71 SE 93 CA 200 FR 378 KR 200 FR 149 KR 148  

B. Reference distances of inventors in and outside Europe and US 

In this appendix we discuss the effect of considering the reference distance of patents where the inventor is located (far) away from the jurisdiction 
of the patent office, for example EP patents with a US inventor (Fig. 10 left panel) or US patents with a EP inventor (Fig. 10 right panel).

Fig. 10. Reference distance for science dependence fraction On the left we display EP patents of which the inventor is from the US and on the right we display US 
patents of which the inventor is from EP. See Table 1 for a legend of the icons. 

In Fig. 10, the relation between the science dependence fraction and the reference distance again appears to be positive, be it more irregular than 
the earlier observed relations. However, there are also a number of differences with Fig. 5. The most striking difference is that the reference distances 
of the US patents in 10 are much greater. The reference distances can therefore be concluded to partly depend on the location of the inventor. If we 
would have included the US patents from Fig. 10 in Fig. 5, this would especially affect the reference distance (which is an average over all patents) of 
technologies with lower numbers of patents. Another striking difference is that the positive relationship between science dependence fraction and 
reference distance is for the EP patents a lot steeper in Fig. 5 than in Fig. 10. This might be a result of the following. There are generally more US 
patents and inventors than EP patents and as a consequence, the US patents are cited relatively often. The reference distances of EP inventors referring 
to US inventors are much larger than those of US inventors referring to US inventors. There may therefore be less variation in the reference distance of 
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US inventors, because even when they apply for an EP patent (i.e. Fig. 10 left panel), they may still be citing US inventors relatively often. Finally, we 
note some typical differences on the level of individual technologies. Wind turbines have a relatively high reference distance in the left panel of Fig. 10 
(as compared to both the right panel and Fig. 5). This indicates that the EP wind turbine inventors refer to patents from inventors close to home (most 
likely within Europe) whereas the US wind turbine inventors tend to refer to patents from inventors far from home (most likely Europe). This may 
illustrate a European lead in the wind turbine innovative activities. We see the reverse relation with fuel cells, of which the reference distance in the 
left panel of Fig. 10 is relatively low as compared to Fig. 5. In the right panel, the reference distance of this technology is actually relatively large, 
indicating a US innovative lead for this technology. 
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