
Science and Technology Relatedness: The
Case of DNA Nanoscience and DNA
Nanotechnology

Hanh Luong La and Rudi Bekkers

Abstract The relatedness between knowledge components within the science
domain is widely discussed in the economic, innovation, and management literature.
The same is true for the technology domain. Yet, the relatedness between knowledge
components across these knowledge domains has received considerably less atten-
tion. This chapter aims to introduce the concept of knowledge relatedness between
science and technology (S&T), which have been disentangled as two distinct
corpora. We approach S&T relatedness from two perspectives: content relatedness
(with four indicators: similarity, complementarity, commonality, difference) and
temporal relatedness. We then test our ideas with novel empirical material from
the field of DNA nanoscience and DNA nanotechnology. We find that the related-
ness between S&T scores relatively low, which may explain the relative lack of
commercial activity in this field. In light of their indirect complementarity, we
recommend that funding “bridging areas” could lead to simultaneous progress in
S&T.
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1 Introduction

The relation between science and technology (S&T), two knowledge domains that
are believed to be main sources for innovation and economic growth,1 is a broad and
fascinating topic for evolutionary economists and science-technology-innovation
(STI) policymakers. It is widely accepted that S&T are interacting, interdependent,
and interconnected entities (Breschi & Catalini, 2010; Meyer, 2000; Wang & Li,
2018), especially in science-based technologies. The nature of S&T relationship,
therefore, can be investigated in a narrower sense via S&T interaction. Such
interaction, for instance, between the public science sector and the private sector,
is a crucial factor shaping the competitiveness of firms, regions, and countries
(Nomaler & Verspagen, 2008). However, S&T interaction cannot easily be observed
directly. Most empirical literature studies S&T interaction by looking at similarities
(e.g., patent-paper pairs2) and at linkages (scientific non-patent literature3). Possible
complementarities between these domains have received relatively little attention.

Addressing the gap in both theory and empirics, this chapter introduces the
concept of “S&T relatedness” as a proxy for S&T interaction. It is an umbrella
concept encompassing both similarities and complementarities across the domains.
We theorize that the higher the S&T relatedness (but not only S&T similarities), the
more economically one can further develop both domains, given the scarcity of
resources, including funding R&D projects. A higher S&T relatedness also means a
higher probability that a scientist in the field reaches out of her specialization
towards technology-oriented activities, or a higher probability that an inventor in
the field engages in more science-based activities. Via measuring S&T relatedness
empirically, we aim to find which knowledge areas in both domains should deserve
more attention. Choosing a text-mining and keyword analysis approach, we aim to
identify the most important knowledge areas and their relatedness across S&T
domains.

We tested our concept on the case of DNA nanoscience and DNA nanotechnol-
ogy (to which we will from now on refer to as DNA-Nano). We found this field is
growing in science, and promises many emerging technological applications (e.g., in
electronics, molecular and cellular biophysics, biomimetic systems, energy transfer
and photonics, and in diagnostics and therapeutics for human health, Pinheiro et al.,
2011). However, actual industrial applications are lagging behind, and there has
been little marketable activity (Dunn, 2020). We suspect if there was due to too little
S&T interaction, or a significant technology lag in comparison to science. We asked
ourselves: “How closely related is the knowledge in both S&T regarding this specific
field?”, “How can one enhance the growth of both S&T economically?”, and

1See the discussion on neo-classical and evolutionary theories in Nelson and Winter (1974) and
concerns raised by Dosi (1982), Suenaga (2015), and others about uncertainties related to S&T that
may cause new technological paradigms.
2We later refer to these as PPPs.
3We later refer to it as NPL.
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“Which knowledge areas in S&T should deserve more priorities for funding and
development”?

The remainder of the chapter is structured as follows: we start by discussing the
current literature on the S&T relationship, S&T interactions, and on knowledge
relatedness in Sect. 2, as well as introducing our research questions. Then, Sect. 3
presents our research methods, including the selection of S&T domains and the
measurement of S&T relatedness. We measure S&T relatedness in two dimensions:
content relatedness and temporal relatedness. In Sect. 3, we also present an overview
of our empirical data. Section 4 discusses our results, while Sect. 5 offers discussion
and conclusion.

2 Literature Review: From the S&T Relationship to S&T
Relatedness

2.1 S&T Relationship and Interaction

The S&T relationship and interaction is a recurring and fascinating topic in the
economic and innovation literature. It can be considered an interrelationship,
because multiple knowledge components in science are connected to multiple
knowledge components in technology, and we encounter variations across these
S&T domains. We discuss the theoretical and the empirical literature that focuses on
observable patterns in the development of S&T. We conclude the section by raising
our research questions.

Since S&T are very much interrelated, numerous works have focused on com-
paring their knowledge developments. While both domains encompass research
activities, their objectives are different. Science aims to discover, describe phenom-
ena, and build theories (Drexler, 2013, p 116; Kuhn, 1970, p 60). Technology aims
to find solutions for problems and is more concerned with design and production
(Dosi, 1982; Drexler, 2013, p 117).

Table 1 shows selected literature on comparing knowledge development between
S&T. Basically, there are two main streams, and both acknowledge the interaction
between the two domains. However, the first stream (Quadrant I and IV) considers

Table 1 Four quadrants of research on S&T relationship with examples

Literature that considers S&T as two
distinct entities

Literature that focuses on S&T
convergence

Theoretical I II
Dosi (1982), Pavitt (1987), Price (1965) Arthur (2009), Layton (1974),

Nordmann (2008)
Empirical IV III

Mina et al. (2007), Zhao and Guan (2013) Breschi and Catalini (2010), Murray
(2002)
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S&T as two separate entities, whereas the second stream (Quadrant II and III)
regards them as two converging entities.

Quadrant I comprises the theoretical literature that considers S&T as two separate
entities, typically characterized by similarities and complementarities. Examples of
scholars who followed this approach are Price (1965), Dosi (1982), and Pavitt
(1987). The work by Price (1965) is considered one of the earliest seminal studies
on the S&T relationship and interaction. It refers to Toynbee’s “pair of dancers” as a
metaphor for the relationship between S&T. Price implies that S&T are two (paral-
lel) co-evolving, cumulative, and autonomous structures/entities. Although the
dancers could be men or women, with differences in attitude and structure, they
move to the same music. In the view of Price, the “S&T dancers” typically have
“infrequent interaction,” a “separate cumulating structure” and more interestingly,
are considered to be complementary. Two decades later, Dosi (1982) describes the
two domains in terms of scientific and technological paradigms, and scientific and
technological trajectories. He reiterates Thomas Kuhn’s (1970) view of a scientific
paradigm as a model, a pattern, and a set of problems of inquiry. In an analogy of
Kuhn’s scientific paradigm, Dosi defines the technological paradigm as a “model, a
pattern of solution of selected technological problems, based on selected principles
derived from natural sciences and on selected material technologies.” In this sense,
the similarities between scientific and technological paradigms lie in the mechanism
and procedure of both S&T. Pavitt (1987) strongly argues that the efficiency of the
whole field is not inevitably an outcome of creating more similarities between S&T.
He emphasized that policymaking should consider the complementarity between
S&T, which “varies considerably among sectors of application, in terms of the direct
usefulness of academic research results, and the relative importance attached to such
results and to training.”

Quadrant IV comprises empirical studies that consider S&T as two separate
entities, and is, compared to the other quadrants, understudied. Mina et al. (2007)
study the evolution of scientific and technological knowledge on the treatment of
coronary artery disease by comparing the two top main paths4 of its scientific and
technological citation networks and found them somewhat similar. From a different
perspective, Zhao and Guan (2013) introduce a model characterizing the relationship
between S&T based on their classification of S&T styles and the changes in
producing publications and patents. While their approach is novel, their dataset
(on nanotechnology) was limited to publications and patents at selected universities
only. Their work thus ignores the role of industry in publishing and patenting.

Quadrant II comprises theoretical contributions investigating the S&T knowl-
edge relationship via the integration or overlap between these domains. Layton
(1974) explains how transforming a set of technological rules became a new entity

4The main path approach is a network analysis tool introduced in the late 1980s to investigate
networks of scientific publications, and later to study patent networks (see Verspagen, 2007;
Bekkers & Martinelli, 2012). The top main path is considered as representing the most important
developments in citation networks.
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of science: “technological science” or “engineering science.” In a similar vein,
Arthur (2009) further articulates that S&T are “deeply interwoven.” In fact, in the
field of nanoscience and nanotechnology, some scholars articulate the term
“nanotechnoscience” (Nordmann, 2008; Patra, 2011). Such terms reflect the belief
in a true integration of S&T, a context in which we cannot simply distinguish
between S&T, or between basic and applied research (Nordmann, 2008).

Quadrant III comprises empirical contributions that examine the S&T knowledge
relationship via the convergence or overlap between scientific and technological
networks. Scholars in this quadrant emphasize similarities, rather than complemen-
tarities, making the differences between S&T appear insignificant (Meyer, 2000).
Since Narin et al. (1997), a large body of quantitative literature used NPL references
as a direct proxy for S&T interaction including Meyer (2000), Verbeek et al. (2002).
Other studies, such as those of Murray (2002) and Chang et al. (2017), investigate
S&T interaction via patent-paper pairs (PPPs), based on the assumption that a single
idea is described in both a patent and a paper. From such pairs, networks of
co-authoring and co-patenting can form the basis for further analysis. Murray’s
work (2002) forms the basis for Boyack and Klavans (2008), Breschi and Catalini
(2010), who trace the link between scientific and technological networks via their
gatekeepers: inventors-authors. Perhaps, the emerging topics around these gate-
keepers are just the tip of the iceberg, reflecting only the part of both networks
where the similarities are the strongest and most visible. Arguably, the S&T inter-
action may occur in certain other places than just where direct citation links, PPPs or
inventors-authors exist, and the largest share of knowledge is through work by
non-author inventors and non-inventor authors. If this is true, then it would be
good to look at the S&T interaction also from a broader perspective, through various
patterns of interaction (e.g., complementarities), rather than only based on similar-
ities. We also note that observing citations links has inherent limitations: while
patents do at some rate refer to scientific publications (NPL), scientific publications
rarely refer to knowledge contained in patents, even if granted patents, by mere
definition, must be novel.

2.2 From Knowledge Relatedness to S&T Relatedness

The literature on knowledge relatedness is fragmented and not well-established. The
S&T relatedness and knowledge relatedness between two domains have not been
discussed in any literature. In this sub-section we will discuss the “relatedness” as a
“universal” concept, and then in different contexts, ranging from computational
linguistics, management studies to economic geography, then explain why we
need this concept in explaining S&T interaction.

Most of the literature refers to “relatedness” as the measure of proximity—or
distance—between two entities, activities, or components, generally within one
domain (in one corpus, in science or in technology, in one region, or in one sector,
etc.). Originating from one domain, these entities normally are not identical but
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sharing some commonalities. The relatedness between two entities is often measured
by the overlap (via co-classification or co-occurrences) between them. Therefore,
knowledge relatedness has been mostly equated with knowledge similarity, which
just reflects part of the whole picture of all possible patterns of relatedness. In
computational linguistics, semantic relatedness is often used interchangeably with
semantic similarity, which is the distance between two-word vectors (measured by
the cosine of the angle between vectors, Euclidean distance, or Spearman rank
correlation coefficient, etc.).

Economic geographers and innovation economists see technology relatedness as
the extent to which the variety of technologies being used in a region is related
(Boschma & Frenken, 2009). Scientific relatedness refers to the cognitive distance
between a new potential scientific topic and a set of specialized topics (Boschma
et al., 2014). These concepts of relatedness are often employed to study how
specialization and diversity influence firms’ performance or regional economic
growth.

Makri et al. (2010) investigate science similarity and complementarity, technol-
ogy similarity and complementarity, but only at a firm level. In this study, they
conceptualized knowledge relatedness as knowledge similarity and complementar-
ity. They argued that technological overlap can proxy the similarity of technological
assets but cannot capture possible technological complementarities. Even 10 years
after their publication, knowledge complementarity is still under-researched in
different contexts.

As far as we are concerned, knowledge production is an interactive, path-
dependent, and cumulative process (Boschma et al., 2014; Dosi, 1982). The extent
to which knowledge entities are related can also reflect the interaction between
agents. According to Tripodi et al. (2020), knowledge relatedness increases the
probability of a scientist reaching out of her own specialization. Looking at our
context of S&T relationship, S&T relatedness could indicate the probability of a
scientist engaging in more technology-oriented activities or an inventor engaging in
more science-based activities. It could also reflect the interactive learning process
between scientists and inventors, in short S&T interaction.

In summary, the literature on the S&T relationship and interaction, and knowl-
edge relatedness discusses both similarities and complementarities. The empirical
literature, however, mostly focuses on similarities, sometimes on differences, and
hardly focuses on complementarities. Empirical works on S&T similarities mainly
use PPPs, as a proxy for S&T interaction. But we think there might be more room to
discuss the S&T interaction in a more systematic manner, because PPPs just reflect
the similarities in an incomplete extent.5 The players in both S&T can interact
(or learn from each other) in multiple ways6 (for instance, reading and referring to
others’ work, but also being co-funded in the same project, or sharing the same

5In a similar vein, Heinisch et al. (2016) used co-location as a proxy for direct knowledge
interaction.
6Both directly and indirectly.
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equipment), which contribute to the similarities and complementarities. Moreover,
empirical work on S&T relatedness, including S&T complementarity, remains a
research gap in S&T studies and knowledge relatedness across domains. For these
reasons, our study aims to introduce the concept “S&T relatedness,” its dimensions
and measurement. In this chapter, we test it empirically on the case of DNA-Nano
S&T. Thus, we aim to investigate empirically to what extent the knowledge contents
in DNA Nanoscience and DNA Nanotechnology are related; more specifically, how
they are similar, complementary, or different, over time. Additionally, we also look
at the temporal relatedness of these domains, based on the gap between the emer-
gence of knowledge areas in each domain.

3 Methods and Data

To study S&T relatedness, we consider these two domains as two corpora, i.e. bodies
of text. In text-based methodologies, science is often proxied by academic publica-
tions,7 whereas technology is often proxied by patents. By combining our related-
ness metrics with text-mining publications and patents, we aim to discover narrative
information within and across the two interrelated domains. Such a method is useful
not only in information retrieval but also in the evaluation of research and funding,
future complementary qualitative research, STI studies, and policymaking.

Accordingly, we extract publications (mainly journal articles) and patents sys-
tematically from two database platforms (Web of Science, provided by Clarivate
Analytics and PATSTAT by the European Patent Office), which provide extensive
search and retrieval facilities within their meta-data. Accordingly, we employ text-
mining techniques to convert unstructured data (raw text) into structured data,
namely “knowledge areas” represented by the most “significant” terms8 (a smaller
unit of analysis9).

In a nutshell, our methodology is four-fold: assembling two corpora, one for
science and one for technology, by retrieving relevant documents from the respec-
tive databases, using our concept approach (Sect. 3.1), text-mining methods that
extract key terms with their occurrences and co-occurrences from each corpus and
can proxy the respective knowledge base underlying the two knowledge domains
(Sect. 3.2), measuring the content relatedness between S&T by several indicators:
commonality, similarity, complementarity (direct, indirect), and difference (Sect.
3.3), and measuring the temporal relatedness between S&T based on the emergence
of knowledge areas (Sect. 3.4). In Sect. 3.5, we provide a description of our data.

7Note that while we use the term “academic publications,” such publications can also be authored
by people working for firms. Likewise, university staff can also apply for patents.
8They are “term groups,” which consist of synonyms, abbreviations. . .which have the same
meaning.
9We used two levels of analysis: domain level, and term level.
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3.1 Selecting S&T Domains: The Concept Approach

For both publications and patents, the most common search/selection strategies are
keyword search and classification search (Benson & Magee, 2013), or the combi-
nation of both. The keyword search typically employs search terms in combination
with Boolean operators. The classification search is applicable when publications are
classified in research areas (e.g., Web of Science categories), or when patents are
hierarchically classified according to technology/application areas (e.g., IPC or CPC
codes). More sophisticated approaches for keyword search use structured text-
mining software and expert inputs to identify key terms (see Arora et al., 2013).
Other approaches for classification search include the Classification Overlap
Method, which splits the definition of a technology into two components, a func-
tional or “artifact” component and a “knowledge” one (Benson & Magee, 2015).

The selection procedure to build the datasets of publications and patents is a
critical step, and we evaluate our selection using two criteria: recall and precision.
Recall is defined as the proportion of all relevant records retrieved, whereas precision
is the proportion of retrieved records that are relevant. Both in practice and (infor-
mation retrieval) theory, it is hard for any query to achieve perfect recall and
precision at the same time, because of the inherent trade-off between the two. Search
strategies can increase recall (e.g., using synonyms, wild-flags, and OR operators) at
the expense of lower precision. Alternatively, search strategies can increase preci-
sion (e.g., using AND operators together with highly specific search terms) typically
imply lower recall. The true challenge is to find an appropriate balance between
recall and precision in a given context. The achievable levels of recall and precision
also depend on the subject area and the novelty of the field. In emerging fields,
tracking patents and publications is often challenging (Huang et al., 2015). Data
might be poorly defined, and terminology may change over time. Classifications
systems for publications/journals and for patents may not yet offer specific classes
for emerging fields. The researchers often face the challenges of either low recall or
low precision or the imbalance in the sub-areas of the emerging field (ibid.).

It is worth noting that for data retrieval in emerging fields, the requirement for
precision is often considered to be not as important as in well-established fields.
Porter et al. (2008) argue that for a vast domain like nanotechnology, there is no
absolute standard for recall and precision. Huang et al. (2015) suggest that a search
with high recall and satisfactory precision is useful in emerging technology studies.
We think Huang et al. (2015)’s suggestion above is quite reasonable and applicable
in our case, because for an emerging field like DNA-Nano, it is harder to achieve
precision than recall. While we can define and estimate recall by counting the
presence of relevant contributions by key individuals in DNA-Nano, defining and
estimating precision is a daunting and infeasible task. Among other things, this is
because the boundaries of an emerging field with its adjacent fields have not yet been
precisely defined.10 Moreover, each individual expert in the field works within

10This may due to the fact there is no fixed perfect definition for a new field.
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his/her narrow area of expertise and is not fully aware of the knowledge development
and recombination in the entire field. The growth of the field now has much gone
beyond what Seeman—the pioneer of DNA-Nano, and his first-generation students
ever imagined. Based on the above considerations, for this study, we choose to
prioritize recall over precision.

Our initial exercises with keyword search and classification search strategies for
DNA-Nano (a field we will describe later) revealed low levels of recall and preci-
sion. Most likely, this was because it is an emerging, complex technology field,
whose boundaries with other knowledge fields (e.g., bio-nanotechnology, biochem-
istry, biophysics) are fuzzy and still developing. Classification codes are not yet
available for this specific complex field, because DNA-Nano’s scope does not
certainly fall within even one or more traditional classifications such as nanotech-
nology or biochemistry. Keywords that can precisely distinguish DNA-Nano from
adjacent fields are hard to find.

Finally, we adopted an approach that we learned through intensive interaction
with technology and business intelligence units in the industry that work on patent
landscaping and patent text-mining. Unsatisfied with traditional patent selection
methods (specifically based on keywords and IPC codes), these industry experts
pioneered their own approach and found it useful for capturing patents in emerging
fields. To the best of our knowledge, the method they developed is new to scholarly
studies, and we will refer to it as the “concept approach.” In short, it works as
follows: First, one operationalizes the definition of a knowledge field into a minimum
number of independent concepts (often 3 or 4), each representing an indispensable
element of the field in question. For each concept, one performs an inclusive search,
aiming at a (much) high recall rather than precision (for instance, using all known
synonyms related to the concept, combined with the OR operator). As a second step,
one selects only the intersection of all concept groups, resulting in a much smaller
set. Precision is achieved at this second stage. The concepts approach is an iterative
process, whereby the results of each step are monitored in terms of achieved levels of
recall and precision,11 and search queries are refined until no further improvement
can be reached, and the sought level of recall and precision is achieved. While
originally developed for patents, this approach can be equally used for publication
retrieval.

We applied this concept approach on the knowledge field of “DNA Nanotech-
nology” (terminology often used in both publications and patents), and “DNA
Nanoscience,” by which we mean the scientific domain of DNA Nanotechnology
(see Douglas, 2016, for a more elaborate discussion on the concept of DNA
Nanoscience). The journal Nature Research (2018) defines DNA Nanotechnology
as “a branch of nanotechnology concerned with the design, study and application of

11Precision can be estimated by taking a random sample of the set, and manually investigating
whether all the records indeed belong to the sought field. Recall can be estimated by independently
creating a set of records that are known to belong to the sought set (e.g., by asking an independent
expert in the field, or selecting the relevant patents or publications of key contributors) and then
testing whether these records are present in the set.
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synthetic structures based on DNA. DNA Nanotechnology takes advantage of the
physical and chemical properties of DNA rather than the genetic information it
carries.” Based on a literature review and on consultation with active researchers in
DNA-Nano we met at conferences, we derived four12 independent concepts to use in
our concept approach. These are Nanotechnology (A), Design (B), Structure (C),
and DNA (D), as illustrated in Fig. 1 (see also Annex). For each concept, we
developed search queries that used all relevant keywords and known synonyms,
which were collected exhaustively from multiple sources.13 Ideally, we want to
apply the same query for publications and patents, as being described in our previous
work (La & Bekkers, 2018). However, investigating the relevant publications and
patents of known scientists and inventors in this field, we learned that the language in
publications is different from that in patents. The language in publications tends to
be broader, while the language of patents is narrower and more precise. Conse-
quently, we had to adapt our queries to the different language use in publications and
patents, in order to achieve both high recall and satisfactory precision. Consequently,
we employed a set of queries to collect publications, and another set of queries to

The intersection
of four conceptsNanotechnology (A)

Design (B) Structure (C)

DNA (D)

Fig. 1 Illustrating the concept approach to DNA nanotechnology

12We found that, in our context, four was the number of concepts allowing us to reach the best
balance between recall and precision. With three concepts, the level of precision reduced signifi-
cantly. With five concepts, the concepts started to lose their initial independence, and the level of
recall dropped.
13Information sources include materials and notes taken at technical conferences on DNA-Nano,
communication with experts by email and Skype, and publications and news items in the field of
DNA-Nano.
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collect patents. We involved two experts14 to validate that queries included appro-
priate keywords. Subsequently, for each dataset, we selected the records satisfying
all four concept groups. To improve the precision of each dataset, we imposed two
lists of exclusion terms, one to remove the irrelevant records from the titles, and the
other to remove irrelevant records from titles, abstracts, and keywords. We found
these exclusion terms by reading the irrelevant records retrieved from the overlap of
the four concept groups. After a number of iterative steps of improvement and
refinement,15 we created our final datasets. Because the patent dataset was much
smaller than the publication dataset (there are considerably fewer patents than
publications in this area), we complemented the identified patent data with their
forward citations. This step further increases recall, while testing confirmed there
was no notable drop in precision. (The publication set was already sufficiently large,
so we did not have to take such a step). Annex provides details on the concepts we
used, as well as our final search queries.

3.2 Selecting Knowledge Areas Within S&T

An important next step was to identify distinct knowledge areas in the field of
DNA-Nano. The text from the title and abstract of papers and patents offers
opportunities to do so, but also poses several challenges:

1. Technical terms often consist of combinations of words, rather than a single word
(Nakagawa, 2000). The field we study is not an exception to that. Single words
appearing with high frequencies16 (e.g., “DNA,” “temperature”) are insufficient
to describe a new concept or authors’ main contributions. High-frequency single
words can become meaningful, descriptive terms if they are combined with other
single words to form compound nouns (e.g., “DNA origami,” “temperature
control”). We addressed this challenge by using the automatic Term Recognition
algorithm proposed by Nakagawa (2000). In this algorithm, a Term Extract score
is computed based on how many compound nouns have a simple noun N
included as an element. In other words, the more frequently a simple noun is
integrated with other compound nouns, the higher its score. Our tokenization

14Sungi Kim, PhD candidate at Seoul National University, validated the queries for collecting
publications. Jürgen Schmied, CEO of Gattaquant, a company working in the field of DNA
Nanotechnology, validated the queries for collecting patents.
15We improved recall by checking whether the authors and inventors whom we know are present in
our search results. If not, we included more keywords from their publications/patents. We improved
precision by sampling 20 records each time and checking if any record is irrelevant. Then we
identified the keywords that distinguish DNA-Nano from other fields in that record, and put them in
the exclusion terms.
16And even those with high term frequency-inverse document frequency (tf*idf).
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process considers bigrams and trigrams, as long as they appear in the Term
Extract list with a score.

2. Frequently occurring compound nouns can still be non-technical or
non-descriptive,17 or may fall outside our field of interest. As no software or
algorithm can solve this in a fully automated way, we addressed this challenge
through extensive manual checking and exclusion. As part of this manual
checking, we excluded POS (Part of Speech) words and other generic biological
terms such as “DNA,” “RNA,” “protein,” and “acid amine.”

3. Certain terms can be written in more than one way. Techniques such as stemming
(cutting ends off words, e.g., from “saying” to “say”) or lemmatization (finding
the original form of a word, e.g., from “said” to “say”) may be helpful for some
words (especially verbs), but will not work for others, such as synonyms and
abbreviations. To address this challenge, we manually harmonized terms (such as
grouping synonyms, abbreviations) into term groups,18 which represent knowl-
edge areas. For example, we harmonized “3D structure” into “three-dimensional
structure,” “control of temperature” into “temperature control,” and “Au nano-
particle” into “gold nanoparticle.”

4. We counted the document frequency19 (the number of documents where a term
occurs at least once) of extracted and harmonized terms (resulting from the above
steps) in our datasets across years and periods.

3.3 Measuring S&T Relatedness

As argued above, in the literature, knowledge relatedness has mostly been discussed
within the realm of one single domain—science or technology. To investigate the
evolving knowledge base of S&T related to a specific new field, we believe it is
important to develop cross-domain measures. When analyzing S&T as two separate
text corpora, one would not have to describe the interaction between them via
conventional channels such as NPL references, PPPs. In this chapter, we use the
S&T relatedness as a proxy for S&T interaction. More specifically, we need to
clarify different types/indicators of knowledge relatedness as proxies for the extent
and content of the knowledge interaction between the two domains.

Because we follow the approach of breaking down each of the two domains into
smaller units—knowledge areas represented by terms, we will first discuss four
indicators of cross-domain relatedness at the level of knowledge area20: similarity,
commonality, complementarity, difference. Knowledge similarity, the most stringent
measure of cross-domain relatedness, occurs when the same narrowly defined

17For instance, “this study,” “this invention.”
18We ended up with 109 cross-domain term groups, which have been harmonized from 400 tech-
nical terms extracted with highest scores by the automatic Term Recognition algorithm.
19We used Higuchi Koichi’s KH coder text-mining software (Version 3a12d).
20A sub-domain unit of analysis.
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knowledge area appears in both domains with similar relative frequency (example B
in Fig. 2b). Similar knowledge areas are per definition common ones, but not the
other way around. Knowledge commonality occurs when the same narrowly defined
knowledge area appears in both domains regardless of their relative frequency in
each domain (examples A and B in Fig. 2a). It means that the same knowledge area
is used in both S&T, even if the extent of use is different. While knowledge similarity
may indicate the highest intensity of S&T interaction, knowledge commonality may
indicate it at a somewhat lower level. However, this is potentially useful, as a pair of
common knowledge areas like C and D co-occurring in both publications and
patents could strengthen the knowledge base of both S&T; a common knowledge
area like F can help to bridge S&T in the case of indirect complementarity between E
and G (Fig. 2d).

We furthermore distinguish two forms of knowledge complementarity in the
absence of knowledge similarity. We talk of direct knowledge complementarity
when two knowledge areas strongly co-occur in both S&T (in Fig. 2c, C and D
are directly complementary). In this case, C and D are certainly common knowledge
areas. However, they indicate a weaker intensity of knowledge flows between the
two domains. It means that this combination frequently occurs in publications but
also in patents. This should reflect the combinatory nature of each domain in an
evolutionary vein. In this case, technology relatedness coincides with science
relatedness.

In addition, we theorize indirect knowledge complementarity between two
knowledge areas, when each of them co-occurs strongly with a third knowledge
area, called a bridging knowledge area, which appears in both domains (in Fig. 2d, E

a. Common (A & B), different (X & Y) b. Similar (B)

c. Direct complementary (C & D)

TechnologyScience

A
B

BX
Y

TechnologyScience

B
B

Science Technology
Science

Technology

C
C D

E
F

F

G

d. Indirect complementary (E & G)

D

A

Fig. 2 Types of S&T content relatedness: commonality, similarity, complementarity (direct and
indirect), and difference. (a) Common (A&B), different (X&Y). (b) Similar (B). (c) Direct
complementary (C&D). (d) Indirect complementary (E&G)
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and G are directly complementary, and F is the bridging area connecting them).
Identifying and promoting bridging knowledge areas could help to stimulate the
continuous progress of both domains economically.

Finally, knowledge areas are different if they only exist in one domain, not in the
other (examples X and Y in Fig. 2a). This case indicates the absence of relatedness
between two domains.

The above definitions relate to the individual term level. To compare two
domains, the result needs to be aggregated to the domain level. We did so for the
full time period of the sample, but also for three subperiods separately (see Sect. 4.2).
Regarding knowledge commonality, we tried to identify all distinct knowledge areas
(represented by terms) that two domains have in common in different subperiods,
regardless of their extent. To measure knowledge similarity, we aimed to check if
those common knowledge areas appear at a closely similar relative extent in both
domains. From the list of common terms, we performed the Chi-square test for
corpus similarity to assess whether both domains consist of terms drawn randomly
from some larger domain (for this test, see Evert, 2005; Kilgarriff, 2001).21 We
considered the domains to be similar (i.e., belonging to some larger population) in
respect of each term if the outcome is significant at 5% confidence level.

To our knowledge, no standard cross-domain measure of either direct or indirect
complementarity exists. So, we propose two tests that can, in principle, be applied to
any two knowledge domains. Both tests are based on the co-occurrences of terms.
The first test measures the direct complementarity between two knowledge areas
(represented by two terms). It is calculated as follows:

Jdirect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ji " J j

p

where Ji is the Jaccard index of the co-occurrence of the two terms in the Science
domain, and Jj is the Jaccard index of the co-occurrence of the two terms in the
Technology domain. Thus, our measure of direct complementarity Jdirect is high
when the terms in question frequently co-occur in both domains. Our second test
measures indirect complementarity between two knowledge areas (represented by
two terms). It derives from the co-occurrences of the two terms of interest with a
third term, the bridging term. It is calculated as follows:

J indirect ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jim " Jjn

p

where Jim is the Jaccard index of the co-occurrence of the first term and the bridging
term in the Science domain, and Jjn is the Jaccard index of the second term and the
bridging term in the Technology domain.

21We used Stephan Evert’s R package “corpora” for this specific Chi-square test.
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Our empirical exercise for both types of knowledge complementarity involves
three steps. Firstly, we reduced the co-occurrence networks of 109 terms22 to smaller
networks with only edges with a Jaccard index greater than 0.01.23 Secondly, we
matched common pairs between S&T, calculated the Joint Jaccard index,24 then
sorted and compared the lists of direct and indirect complementarity. Thirdly, we
discussed our results with experts in the field (see Sect. 4.2).

3.4 Measuring the Temporal Relatedness Between S&T

Our second research question concerns the measurement of the temporal distance/
relatedness between S&T. Our basic assumption here is that in modern age, what
emerges at approximately the same time could be strongly related to each other.25

We traced our list of knowledge areas, represented by the most significant terms to
check if the time lag is insignificant (less than 5 years) or significant (more or equal
to 5 years). We base our 5-year-threshold on the observations of Daim et al. (2007)
and Finardi (2011) that a usual time lag between S&T is 3–4 years. A short time lag
implies a high degree of temporal S&T relatedness. When the time lag is long, it
suggests a low degree of S&T relatedness.

Note that we do not aim to determine causality here, but rather a measure of
temporal relatedness. Those terms appear simultaneously in S&T could reflect the
similarity between S&T, or the highest level of interaction between S&T. An
inventor can file a patent first and submit a publication on the same matter right
afterward. Or, scientists doing experiments in the same lab might share their
collegues’ work. As long as one’s contribution is published or filed as a patent,
other teammates can cite that contribution right away. Moreover, terms that appear
with a short time lag across the S&T domains could show complementarity. There
might be a hidden knowledge area in the other domain, which triggers the use of
focal knowledge in one domain. In contrast, those terms appear at a longer time lag
could reflect difference. In the end, we will compare with the results of our earlier
analysis.

For each individual knowledge area (as represented by a term), we determined the
moment it first appears (emerges) in the science domain, and when it first appears in
the technology domain. While our time lag threshold of 5 years is by definition
somewhat arbitrary, we believe it is appropriate to the distinction we aim to make.

22We explained how we selected 109 term groups in Sect. 3.2. For the actual analysis of S&T
relatedness, we called them “terms” for convenience.
23This first step resulted in 538 pairs in Science and 391 pairs in Technology.
24This second step resulted in 133 pairs of direct complementarity and 10,525 pairs of indirect
complementarity.
25In earlier ages, however, the temporal relatedness between S&T could happen in 2000
years (Johns, 2020).
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Moreover, we carried out robustness checks which showed that variations to this
threshold do not lead to substantially different results.26

To determine the exact moment of a term emerging the science or the technology
domain, we consider the year of publication and the patent filing year, respectively.
However, we aim to prevent our determination of these moments from being merely
driven by an early, single, and isolated occurrence of that term. Therefore, we want
to observe a certain critical mass, reflecting that knowledge has started to develop in
the domain in question, rather than a one-time or incidental use of the term. For that
reason, we applied a threshold: we consider the emergence of a term to be when that
term hits 5% of its cumulative frequency over the full period. For most of our terms,
this 5% threshold is met at the approximate value of 100 documents. Figure 3
presents an example of the time lag and threshold we applied. In our publication
dataset, the term “liquid crystal” is first mentioned in 1990. Already in the same year,
it reached 5% of the total cumulative frequency in 26 years. In our patent dataset, the
term does not reach the 5% threshold until 1994. Therefore, the time lag between
S&T regarding this specific knowledge area is 4 years. However, based on our
previously mentioned criteria, we determined the time lag in this case is
insignificant.

3.5 Data

Using the search queries based on our concept approach discussed above, we created
a scientific publication dataset using the Web of Science (WoS) database, and a
patent dataset using the Autumn 2016 version of PATSTAT. While a title of a
publication or a patent is usually a set of words carefully selected by the author, it is
the abstract that often mentions the relevant concepts and the contribution of authors
or inventors; therefore, our queries used the text appearing in both titles and
abstracts. We found 135,055 publications and 11,226 patents, dated between 1947
and 2015. However, because the WoS data on academic publications prior to 1990
often lack abstracts, we truncated both our datasets to the period between 1990 and
2015. After removing duplicates and incomplete records (e.g., publications without
titles), our final datasets comprised 123,929 publications and 10,476 patents. After
applying our text-mining techniques (see Sect. 3.2), we identified 109 harmonized
terms that appear either solely or simultaneously in our two corpora.

To investigate the S&T relatedness over time, we further divided this 26-year
time span of data into three subperiods: Subperiod 1 from 1990 to 1997, Subperiod
2 from 1998 to 2005, and Subperiod 3 from 2006 to 2015. The breaking point
between Subperiods 2 and 3 is based on a ground-breaking contribution by a Caltech
researcher Paul Rothemund, published in 2006 in Nature, which by September 2021
received over 4000 citations (Rothemund, 2006). The first patent for this invention

26These robustness checks are available upon demand from the authors.
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was filed in 2005. Before and after 2006, no such compelling breaking point existed,
so we chose subperiods 1 and 2 of equal length. Note that Subperiod 3 is 2 years
longer than subperiods 1 and 2, which might somehow affect the data and impact the
comparability. Yet, we do not expect a significant change in the number of publica-
tions, patents, and document frequencies per period due to this division. We believe
that our choice of breaks between periods, based on Rothemund’s breakthrough, is
better than just dividing it into three equally long subperiods and ignoring this
breakthrough’s timing.
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Fig. 3 The time lag of the term “liquid crystal” between S&T (represented as a red arrow)
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4 Empirical Analysis and Results

This section presents our analysis and the results we found with relation to our two
main research questions (see at the end of Sect. 2.2), using the methodology
described in the Sects. 3.3 and 3.4.

4.1 Descriptive Statistics of Two Corpora

Table 2 provides the descriptive statistics of our data in more details. The publication
corpus is larger than the patent corpus almost 12 times in terms of the number of
documents, 22 times in terms of the number of tokens, and 19 times in terms of the
types of tokens. The mean of document frequency of those tokens in the publication
corpus is 20, which is higher than 15 of the patent corpus. Regarding the dispersion,
the standard deviation of the document frequency of the publication corpus is much
higher than that of the patent corpus (371 and 81). Therefore, the publication corpus
seems to be richer and more heterogeneous.

We can observe a consistent growth of the publication corpus during the full
period (1990–2015), but an inconsistent growth of the patent corpus with a decline in
Subperiod 3 regarding all metrics. As mentioned earlier, Paul Rothemund introduced

Table 2 Descriptive statistics of two corpora

1. Publication corpus
Full period
(1990–2015)

Subperiod 1
(1990–1997)

Subperiod 2
(1998–2005)

Subperiod 3
(2006–2015)

Number of documents 123,929 22,222 37,915 63,792
Tokens in use 12,128,976 2,261,737 3,695,122 6,273,821
Types of token in use 414,234

(100%)
123,448
(100%)

178,681
(100%)

248,822
(100%)

Types of token occurring less than
5 times

359,792
(87%)

105,688
(86%)

153,728
(86%)

214,804
(86%)

Mean of document frequency 20 12 14 17
Standard deviation of document
frequency

371 368 173 250

2. Patent corpus
Full period
(1990–2015)

Subperiod 1
(1990–1997)

Subperiod 2
(1998–2005)

Subperiod 3
(2006–2015)

Number of documents 10,476 1679 5784 3013
Tokens in use 540,992 94,285 302,308 144,412
Types of token in use 21,741

(100%)
8125
(100%)

14,939
(100%)

9972
(100%)

Types of token occurring less than
5 times

16,414
(76%)

6221 (77%) 11,225
(75%)

7571 (76%)

Mean of document frequency 15 7 12 9
Standard deviation of document
frequency

81 29 72 44
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DNA origami technique in late 2005 (as a patent) and in early 2006 (as a scientific
article). His contribution receives a huge number of forward citations in WoS (over
3700), but a much lower number of forward citations in PATSTAT (28). His
invention is quite impactful in science, but not yet so in technology. Despite
promising applications described in scientific literature, perhaps finding its way to
real technological industrial applications is not so easy.

In our sample of 109 cross-domain term groups, the mean document frequency
within the publication corpus is 1336, in within the patent corpus is 77. The standard
deviation in the publication corpus is 1788, in the patent corpus 164.

4.2 S&T Content Relatedness

We now investigate the extent to which knowledge content in S&T domains is
similar, complementary, or different, and how this evolves over time. Table 3 pre-
sents our findings, using our novel dataset and the methodologies outlined in Sect.
3.4. Examples of similar terms are “liquid crystal,” “mass spectrometry,” and
“carbon nanotube”; they appear in the full period in both corpora. Examples of
complementary terms are “cancer diagnosis” paired with “cancer cell,” as well as
“therapeutic agent” paired with “drug delivery.” Table 3 also shows examples of
differences. For instance, in Subperiod 1, the term “microfluidic device” only
appears in patents, while the term “crystal structure” only appears in publications.

Table 4 presents our findings about the degrees of commonality, similarity,
complementarity, and differences in the full period and in the three subperiods.
The fluctuating commonality, stable and low similarity, and increasing complemen-
tarity between the two domains suggest that the S&T domains of DNA-Nano evolve
in different ways, yet achieve a higher degree of relatedness in Subperiod 3. This
may be down to differences in purposes of S&T, or various knowledge recombina-
tion processes going on in each domain. Even when, using Price’s analogy, these
“dancers infrequently move to the same music” (low similarity), their interaction
could be estimated from their increasing complementarity.

Row 1 in Table 4 presents the results of our quantitative analysis of commonality.
To prevent accidental occurrences of terms in both corpora, we removed all terms
with frequencies lower than five (see the discussion about common and similar
knowledge areas in Sect. 3.3). This step also helps us to achieve reliable results from
our Chi-square test for similarities (Rayson & Garside, 2000). We see that the degree
of commonality in the whole period is high 82.6% (91 out of 109 terms appear in
both domains). Looking at the subperiods, we observed that the commonality is
lowest in Subperiod 1 (at 43.3%), increased in Subperiod 2 (to 80%), and started to
decline in Subperiod 3 (down to 73.3%).

Row 2 in Table 4 shows the results of our similarity test for common terms that
have the same relative frequency (for the Chi-square test used here, see Sect. 3.3).
We found that the similarity over the whole period is only 14.4% (13 out of 90 terms
have similar relative frequencies). Yet, if we consider the subperiods 1 and 3, the
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similarity level is higher (23–34%). Subperiod 2 has lowest similarity (19.4%),
which might be an indirect cause of the drop of the number of patents in Subperiod
3. The similar terms seemed to be established knowledge areas in both domains,
such as liquid crystal and biological material.

For the full period, we identified 133 pairs of direct complementary terms. For the
three subperiods, that number increased from 85 to 133. By definition, indirect
complementary terms can occur in much higher numbers and we identified no
fewer than 10,525 of these. Because of computational limitations, we did not analyze
indirectly complementary terms for the different subperiods. Some similar and
complementary knowledge areas form the mainstream of DNA-Nano.27

Table 4 also provides the result from the absolute differences (unrelatedness)
between the two corpora. The level of difference is low (19 out of 109 terms are
different) in the full period (as the reflection of the high commonality in the full
period), is highest in Subperiod 1, and drops almost by a half in Subperiod 2 and
slightly increases in Subperiod 3. The number of terms showing up only in publi-
cations is higher than terms showing up only in patents. This may trigger a thought
that there are still many promising applications, which discovered by scientists but
not yet materialized into real applications.

To have our findings validated by experts in the field, we asked six experts
attending a major conference in DNA Nanotechnology.28 One was Nadrian Seeman,
whom we already mentioned as the founding father of this field. When we presented
the similar terms we found, these experts indeed recognized them as similarities

Table 4 Overview of S&T relatedness indicators

Number of terms
Full
period

Subperiod 1
(1990–1997)

Subperiod 2
(1998–2005)

Subperiod 3
(2006–2015)

1 Common termsa 90/109
(82.6%)

39/90
(43.3%)

72/90
(80%)

66/90
(73.3%)

2 Similar termsa 13/90
(14.4%)

9/39
(23.1%)

14/72
(19.4%)

16/66
(24.2%)

3 Directly complementary pairs of
termsb

133 85 127 133

4 Indirectly complementary pairs of
terms

10,525 n/a n/a n/a

5 Different terms, only in
publications

18/109 50/109 31/109 42/109

6 Different terms, only in patents 1/109 3/109 4/109 1/109
7 Absent in both domains 0/109 17/109 2/109 0/109
aExcluding terms with fewer than 5 occurrences
bData are cumulative (up to and including the listed period)

27This does not happen with knowledge areas that are neither similar nor complementary.
28We did so at the third workshop on Functional DNA Nanotechnology (6–8 June 2018, Rome,
Italy).
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between S&T and believed they were the result of S&T interaction. Regarding
complementarity, the experts agreed on 98% of our pairs of direct complementary
terms (133).29 However, because our list of indirectly complementary terms is so
long (10,525 terms), we could neither ask the experts to check them all nor suggest
any priority of importance. Perhaps future research can find ways to identify the
most prominent indirect complementary terms.

4.3 Temporal Relatedness Between S&T

We measured the time difference between the emergence of knowledge areas
(represented by terms) in S&T, as the proxy for S&T temporal relatedness. As we
can only observe such time differences if a term appears in both domains, we
excluded the 19 terms (out of 109 original terms in our datasets) that do not appear
in both domains or have a frequency of only 5 documents or less. This left us with
90 terms for which we measured time lags.

From these 90 terms, 72 (80%) emerged with insignificant time lags between
S&T (Group 1, examples in Box 1), which implies a strong temporal relatedness. A
total of 18 terms (19.8%) emerged with significant time lags between S&T (Group
2), which implies a weak temporal relatedness: 7 emerged in science significantly
earlier than in technology (Group 2a, Table 5), and 11 terms emerged in technology
significantly earlier than in science (Group 2b, Table 6). These numbers could show
signals of technology leads, in comparison to science.

Box 1. Examples of Terms with Insignificant Time Lags Between S&T
(Group 1)
DNA origami, DNA synthesis, cancer diagnosis, self-assembly, carbon nano-
tube, mass spectrometry, atomic force microscope, therapeutic agent,
supermolecule, RNA synthesis, DNA fragment, resonance energy transfer,
temperature control

For a better understanding of types of knowledge areas emerged with a strong or
weak temporal relatedness, we looked at the terms in more detail. Terms in Group
1 (e.g., DNA origami, DNA synthesis, self-assembly, etc.) represent the knowledge
areas where knowledge in S&T emerged and developed almost simultaneously.
Scientific and technological knowledge might originate from the same place, the
same person, or be the result of a co-creation process by scientists and inventors

Table 5 shows the list of 7 terms (Group 2a), which emerged significantly earlier
in science than in technology. These 7 terms represent the knowledge areas with a

29We explained the concepts of direct and indirect complementarity, and gave them the list of
133 pairs of terms. Some experts reacted right away, others responded later by email.
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weak temporal relatedness between S&T. This could happen when scientific devel-
opment occurred much earlier, but only after a long period it can be realized into real
manipulations/applications in technology. This is the case of “DNA structure,” for
which Seeman constructed the theoretical foundation, however, realized into real
structures only much later. Seeman and his followers encountered many practical
challenges before Rothemund stepped into this field in late 2005, early 2006.
Sometimes, it could be the case that innovation development (starting from R&D
projects) could not pass the valley of death, or not become successful commercially

Table 5 List of terms with significant time lags (Group 2a)

Term

When threshold was 5% total
frequency of each term in
publications (1)

When threshold was 5%
total frequency of each term
in patents (2)

Time lag
between
(1) and (2)

1 X-ray
crystallography

1993 2004 –11

2 Crystal
structure

1994 2002 –8

3 E-coli 1992 1999 –7
4 Raman

spectroscopy
1994 2001 –7

5 High stability 1995 2002 –7
6 DNA structure 1993 1999 –6
7 Molecular

biology
1992 1997 –5

Table 6 List of terms with significant time lags (Group 2b)

Term

When threshold reached 5%
total frequency of each term
in publications (1)

When threshold reached
5% total frequency of
each term in patents (2)

Time lag
between
(1) and (2)

1 Hybridization
chain reaction

2010 1998 12

2 Functionalization 2001 1994 7
3 Liquid phase 1997 1990 7
4 Programmability 2001 1994 7
5 Biosensor 1999 1993 6
6 DNA detection 2001 1996 5
7 DNA

hybridization
1999 1994 5

8 Drug delivery 2001 1996 5
9 Magnetic reso-

nance imaging
1998 1993 5

10 Mechanical
properties

1999 1994 5

11 Nucleic acid
amplification

2001 1996 5
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(e.g., “Raman spectroscopy”). Sometimes, it could be some knowledge areas
inherited from other science fields (“X-ray crystallography,” “crystal structure,”
“molecular biology”), but turned out not to find much use in technology.

Table 6 presents the list of terms that emerged in technology significantly earlier
than in science (Group 2b). These 11 terms also represent the knowledge areas with a
weak temporal relatedness between S&T. Among the 11 terms found, “hybridization
chain reaction” is the one with the longest time gap between technology and science.
Not only driven by techniques (DNA hybridization, DNA detection, magnetic
resonance imaging) and applications (biosensor, drug delivery), technology also
took the lead in “programmability” and “functionalization,” which turn structures
into devices. To build machines at the nanoscale, technology signaled what it needed
from science: “mechanical properties.”

The 11 terms in Table 6 are knowledge areas where science indeed lagged behind
technology. We note that some are closely linked to medical healthcare, such as
biosensor and magnetic resonance imaging. The long investment process required
by firms and other actors in those areas may have resulted in patented inventions,
whose diffusion to academia took time. These may be the areas where scientists
needed time to recognize the relevance to their work, time to set up collaborations
with industry, then use them in the context of their own research on DNA-Nano.
Especially where “science of the artificial” is concerned, technology comes first in
the form of workable structures, devices, and artifacts, which later become the
subject of scientific research. It is also important to bear in mind that laboratory
works always involve equipment, some of which may have been patented several
years earlier. Traditional enabling techniques, methods used in long-existing knowl-
edge fields (such as molecular biology and biotechnology), are still usable/
recombined in emerging DNA Nanoscience.

5 Summary, Discussion, and Conclusion

While the economic, innovation, and management literature extensively discusses
knowledge development and relateness in both the science and in the technology
domain, few studies look at the interaction and knowledge relatedness across these
domains. This study proposes a systematic way of measuring such cross-domain
S&T interaction relations. Starting from the concept of S&T relatedness (both over
content and time), we introduce five novel indicators of knowledge relatedness
across S&T, as shown in Table 7 (in decreasing level of S&T interaction). Following
a text-mining approach, we provide the actual degrees of relatedness across
DNA-Nano S&T according to the five above indicators and detect important knowl-
edge areas across S&T, which is helpful for research evaluation, funding, and policy
recommendations.

Applying our measures to the case of DNA-Nano, a research field that has
delivered interesting developments in both S&T, we summarize our observations
on the above indicators in Fig. 2. We find that the level of knowledge similarity, the
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most stringent measure of cross-domain relatedness, is relatively low: only 14.4% of
the narrowly defined knowledge areas (represented by compound noun terms) we
distinguish in our case qualify as similar. This indicator remains relatively stable
over time (see Fig. 4). Yet, knowledge similarities only reflect a part of the whole
picture of S&T relatedness. The commonality measure delivers a more interesting
trend. Over the three subperiods, it grows from 43.3 to 80% and falls back slightly to
73.3%. Direct knowledge complementarity also goes up over time, without a
fallback.30 Differences in knowledge drop considerably from subperiod 1 to
subperiod 2, but grow slightly towards subperiod 3.

The overall low degree of similarity and the increasing complementarity may
indicate that although S&T interaction in this knowledge field started low, it
increased and then stabilized. We may expect more industrial applications in the
coming period (after Subperiod 3). Altogether, we believe this case illustrates how
our proposed measures provide a sophisticated view on the development of knowl-
edge relatedness across S&T.

While S&T similarity is the form of knowledge relatedness most discussed in the
existing literature, this measurement seems mostly limited to the field’s mainstream,
where S&T have overlapped, intertwined, and most strongly related. Our empirical
results show that we get a much more complete picture if we also measure S&T
complementarity. Taking Price’s analogy of a pair of dancers, S&T do not need to be
identical and too close to each other. It is challenging for dancers to move if they
appear to be too close to each other. While their similarities help with their sustain-
able and incremental movement, their complementarities encourage more knowl-
edge recombination and learning between them. In the future, they could take more
innovative, and breakthrough steps resulted from their current learning and interac-
tion process. Without including the measure of temporal relatedness, one may not be

Table 7 Indicators for knowledge relatedness across the S&T domains

Knowledge similarity Share of narrowly defined knowledge areas that appear in both
domains with similar relative frequency

Knowledge commonality Share of narrowly defined knowledge areas that appear in both
domains regardless of their relative frequency in within each
domain

Knowledge complemen-
tarity (direct)

Share of narrowly defined knowledge areas that strongly co-occur
with each other in both S&T

Knowledge complemen-
tarity (indirect)

Share of narrowly defined knowledge areas that strongly co-occur
with a “bridging knowledge area” that appears in both domains

Knowledge differences Share of narrowly defined knowledge areas that exist in one domain
but not in the other

30For reasons indicated in Sect. 4.2, we did not measure indirect complementarity over the different
subperiods.
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able to see the leading role of either science or technology, and that they grow
together, hand in hand!

The S&T complementarity is our second important indicator of S&T relatedness,
which has been neglected in previous empirical literature (possibly because it is
much harder to measure). In practice, S&T complementarity is harder to be recog-
nized as a form/indicator of S&T interaction. This could originate from academic-
university partnerships, which facilitate knowledge exchange, equipment sharing, or
star scientists’ collaborations in industrial projects. Identifying complementary
knowledge areas across S&T could help establish future crucial partnerships,
co-authorships, co-patenting, co-location, co-creation of potential innovations, and
promote technology transfer from university to industry. Funding “bridging knowl-
edge areas,” e.g., “electron microscope,” “functionalization,” “cancer cell,” from
public investment might provide a necessity for S&T’s future development econom-
ically. Knowledge complementarity might reveal the combination and recombina-
tion process within each domain and the matching capabilities across these essential
domains. These processes would help generate synergies, reduce R&D costs, prom-
ise the growth of more emerging science-based technologies, technology transfer in
the future.

The knowledge difference indicator reflects the knowledge areas which have not
yet been developed in one of the two domains. When the time lag of knowledge
areas between S&T (e.g., “hybridization chain reaction”) is too long, it could result
in a different knowledge area. However, it is not always the case. Some knowledge
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areas only show up in one domain in the end of one subperiod could also appear in
both domains in the early subsequent subperiod. This is the case of different
knowledge areas per period but with insignificant time lags. The analysis of the
relatedness per year could show a better picture of knowledge evolution. However,
our statistical tests may not be implemented because of low or zero frequencies of
some terms in some years, especially in the patent corpus.

The specific approach we chose for our studies also has limitations. Among other
things, it does not observe a direct link between the S&T domains. Subsequent
research could further explore the interaction between these domains by direct
linkages such as NPL citations and PPPs and provide more insights into the
knowledge recombination processes within each domain. Future studies could also
apply our measures to a wider range of fields, and perhaps generate stylized facts
about different types of relatedness, or a taxonomy.
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Annex. The Four Concepts Applied in the Concept
Approach31

1. Description of the Four Concepts, as Well as the Exclusion
Mechanisms Used

Concept A: Nanotechnology “Nanotechnology is science, engineering, and technology
conducted at the nanoscale, which is about 1 to 100 nano-
meters” (definition from the US National Nanotechnology
Initiative, 2000). Thus, any science or technology that
works below the scale of 100 nanometers is considered
“nanotechnology.” This definition is a broad one. We could
therefore maximize our search by collecting synonyms
referring to nanoscale or instruments used in nanotechnol-
ogies, such as specific types of microscopes (AFM, TEM,
SEM)

Concept B: Design The word “design” has two forms, the verb and the noun.
As a noun, “design” refers to an object or an entity. As a
verb, it refers to a process or series of activities. Design is
the construction of an object or creation of an entity. An
interesting feature of the DNA origami technique is that
DNA strands are programmed, synthesized, and can self-
assemble themselves afterward. We found all terms related
to this process and listed them under the concept “design”

Concept C: Structure Structure is defined by the Oxford Dictionary as “a partic-
ular arrangement of parts.” We found several synonyms of
“structure” based on publications and patents in DNA-Nano
by top contributors in the field such as Nadrian Seeman,
Paul Rothemund, and others. We also noted specific words
related to DNA structures and included them in our search

Concept D: DNA DNA is the abbreviation of “deoxyribonucleic acid,” a type
of nucleic acid, a chemical that carries genetic information
in the cells of animals and plants (Oxford Dictionary), or
any living organisms, and viruses (Wikipedia). It is inter-
esting to note that the term DNA, as used in our research,
refers to artificial DNA, not its natural form. However, its

(continued)

31It is worthwhile noting that some records where the concept “nanotechnology” is implicit, should
be included in our datasets. Certain inventors choose not to mention nano-related terms explicitly
or discuss only DNA or oligonucleotides. That might be the reason why a considerable number
of patents belonging to DNA Nanotechnology is not classified under IPC-code B82
(Nanotechnology). From a conceptual point of view, DNA and nano are quite different. However,
from a practical point of view, when discussing DNA or nucleotides, we should imply that
the research is conducted at the nanoscale, since the dimension of a DNA strand is approximately
2.5 nm. Therefore, “DNA” and “*nucleotid*” are included in two concept areas (Nanotechnology
and DNA) to avoid missing certain records that do not mention nano-related terms. Although DNA
and Nanotechnology are closely related concepts, we have not grouped them because this leads
to considerably more noise in the datasets selected. Thus, DNA-related terms must appear in the set
under any conditions, while the presence of nano-related terms remains an option.
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synonyms and related terms are borrowed from molecular
biology

Exclusion terms in Titles (E1) At the first level of exclusion, we excluded specific terms
relating to other closely linked fields (e.g., molecular biol-
ogy, genetic engineering, forensics). However, these terms
could still appear in abstracts or keywords

Exclusion terms in Titles,
Abstracts, and Keywords (E2)

At the second level of exclusion, we excluded the terms that
should not appear in titles, abstracts, and keywords. This
strongest exclusion has improved the precision of our data

2. Final Queries

Query for Publications
(Nanotechnology AND Design AND Structure AND DNA) NOT (E1 OR E2)

.. where
Nanotechnology ¼ NANO* OR ‘ATOM* FORCE MICROSCOP*’ OR AFM

OR TEM OR ‘TRANSMISSION ELECTRON MICROSCOP*’ OR SEM OR
‘SCANNING ELECTRON MICROSCOP*’ OR ‘FLUORESCENCE
MICROSCOP*’ OR ‘CRYO-ELECTRON MICROSCOP*’ OR ‘CRYO-EM’ OR
MOLECUL* OR MULTIMER$ OR MONOMER$

Design ¼ DESIGN* OR COMPUT* OR CONJUGAT* OR FORM* OR
FOLD* OR JUXTAPOS* OR PROGRAM* OR BIND* OR BOUND OR
ATTACH* OR LINK* OR CONNECT* OR CONSTRUCT* OR BRANCH* OR
BOND* OR FABRICAT* OR ‘SELF-ASSEMBL*’ OR ‘SELF-REPLICAT*’ OR
‘SELF-ORGANI*’ OR ‘DIRECTED-ASSEMBL*’ OR SYNTHETIC OR ARTIFI-
CIAL OR ‘NON-NATURAL’ OR UNNATURAL OR ‘NON-GENETIC’

Structure ¼ ‘*STRUCTURE$’ OR DOMAIN$ OR SYSTEM* OR MOTOR*
ORMACHIN* OR DEVICE$ OR ARRAY$ OR POLYHEDR* OR CONJUGATE
$ OR LADDER$ OR ‘*ROBOT*’ OR JUNCTION$ OR SCAFFOLD* OR
TEMPLAT* OR TILE$ OR TILING$ OR LATTICE$ OR ‘STICKY END*’ OR
‘COHESIVE END*’ OR STAPL* OR ‘LOGIC GATE*’ OR CIRCUIT$ OR
ORIGAMI

DNA ¼ DNA* OR ‘*NUCLEIC ACID*’ OR ‘DOUBLE HELI*’ OR HELICES
OR ‘*STRAND*’ OR ‘*NUCLEOTID*’ OR FOLDAMER$ OR APTAMER$

E1 ¼ RIBONUCLEIC OR CELL$ OR THERAP* OR INFLAMMAT* OR
RIBOSOME$ OR BODY* OR SPECIES* OR BRAIN* OR ‘MOLECULAR
CLONING’ OR EVOLUTION* OR IMMUN* OR DISORDER$ OR VIRUS*
OR ORGANISM$ OR ORGAN$ OR BACTERI* OR ANTIBOD* OR
HUMAN* OR MAMMAL$ OR TISSUE$ OR TRANSCRIPTION OR RAT$ OR
MICE OR HSP* OR P53 OR STAT3 OR ‘NON-NUCLEIC’ OR ‘DNA
SEQUENCING’ OR ‘GENETIC ENGINEERING’ OR GENETICS OR SYMP-
TOM$
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E2 ¼ METABOL* OR GEOGRAPH* OR NUTRI* OR YEAST$ OR TREE$
OR SOIL OR FISH* OR MARINE OR INJUR* OR WOUND* OR ‘GENE
EXPRESSION’ OR ‘GENETIC STRUCTURE’ OR ‘GENETICALLY MODI-
FIED’ OR GMO OR ‘GENETICALLY ENGINEERED’ OR ‘GENE REGULA-
TION$’ OR ‘GENETIC ALGORITHM$’ OR ‘GENE DELIVERY’ OR ‘GENE
INTERACTION$’ OR ‘GENO*’ OR ‘PHYLOGEN*’ OR TRANSGENIC OR
HORMON* OR ESTROGEN OR TESTOSTERONE OR PATIENT$ OR
EMBRYO* OR POLYMERASE OR VACCIN* OR ANTIBIOTIC$ OR BLOOD
OR FETAL OR FETUS OR OFFSPRING$ OR BLAST OR FUNG* OR MUTAT*
OR CHROMOSOME OR ‘PRO POLYPEPTIDE$’ OR HELICASE OR INFECT*
OR INSECT* OR PLANT$ OR ANIMAL$ OR FORENSIC$ OR
NANOPLANKTON OR NANOFAUNA OR CAS9* OR NANO2 OR NANO3

Query for Patents
(Nanotechnology AND Design AND Structure AND DNA) NOT (E1 OR E2)

.. where
Nanotechnology ¼ NANO* OR ‘ATOM* FORCE MICROSCOP*’ OR AFM

OR TEM OR ‘TRANSMISSION ELECTRON MICROSCOP*’ OR SEM OR
‘SCANNING ELECTRON MICROSCOP*’ OR ‘FLUORESCENCE
MICROSCOP*’ OR ‘CRYO-ELECTRON MICROSCOP*’ OR ‘CRYO-EM’ OR
MOLECUL* OR MULTIMER$ OR MONOMER$ OR ‘*NUCLEOTID*’ OR
DNA

Design ¼ CONJUGAT* OR FORM* OR FOLD* OR JUXTAPOS* OR PRO-
GRAM* OR DESIGN* OR BIND* OR BOUND OR ATTACH* OR LINK* OR
CONNECT* OR CONSTRUCT* OR BRANCH* OR BOND* OR FABRICAT*
OR ‘SELF-ASSEMBL*’ OR ‘SELF-REPLICAT*’ OR ‘SELF-ORGANI*’ OR
‘DIRECTED-ASSEMBL*’ OR SYNTHETIC OR ARTIFICIAL OR ‘NON-NAT-
URAL’ OR UNNATURAL OR ‘NON-GENETIC’ OR ORIGAMI

Structure ¼ DOMAIN$ OR SYSTEM* OR MOTOR* OR MACHIN* OR
DEVICE$ OR ARRAY$ OR POLYHEDR* OR CONJUGATE$ OR LADDER$
OR ‘*STRUCTURE$’ OR ‘*ROBOT*’ OR JUNCTION$ OR SCAFFOLD* OR
TEMPLAT* OR TILE$ OR TILING$ OR LATTICE$ OR ‘STICKY END*’ OR
‘COHESIVE END*’ OR STAPL* OR ‘LOGIC GATE*’ OR CIRCUIT$

DNA32 ¼‘DNA ACTUAT*’ OR ‘DNA NANOTECHNOLOGY’ OR ‘FOLD-
ING DNA’ OR ‘DNA STRUCTURE’ OR ‘DNA ORIGAMI’ OR ‘DNA
COMPUT*’ OR ‘DNA HYBRIDIZ*’ OR ‘*NUCLEIC ACID*’ OR ‘DOUBLE
HELI*’ORHELICES OR ‘*STRAND*’OR ‘*NUCLEOTID*’OR FOLDAMER$
OR APTAMER$

E1 ¼ RIBONUCLEIC OR ‘*RNA’ OR RADIOTHERAPY OR SPECIES OR
‘*ORGANISM’ OR ORGAN$ OR ‘BIOLOGICAL AGENT$’ OR BIOMARKER$
OR ENHANC* OR ‘*BASE’ OR PAIR* OR ‘*NUCLEOTIDE SEQUENCE’ OR

32It is harder practically to achieve precision in retrieving patents rather than retrieving publications.
Therefore, we decided to adjust terminologies in this DNA concept group into more specific terms,
which include DNA.
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RECEPTOR$ OR ‘*WEAR’ OR CLONING OR BIOSENSOR$ OR SYMPTOM$
OR AGGLOMERATION OR PURIF* OR INFLAMMAT* OR ‘DNA SYNTHE-
SIS’ OR HEMOGLOBIN OR HIV OR BIOACTIVE OR ‘DNA AMPLIFICA-
TION’ OR ‘NUCLEIC ACID AMPLIFICATION’ OR BLOOD OR VITAMIN$
OR IMMUN* OR ANTIBODY OR ANTIGEN$ OR REAGENT$ OR ENCOD*
OR VIRUS* OR BACTERI* OR GENE$ OR ‘GENE EXPRESSION’ OR
HUMAN$ OR PATIENT$ OR LIFE OR ‘AMINO ACID$’ OR TISSUE$ OR
‘NON-NUCLEIC’

E2 ¼ ‘GENE INTERACTION’ OR TRANSFECT* OR TRANSLOCAT* OR
PHENOTYPE OR HYDROGEN OR ENHANCER$ OR EVOLUTION* OR
EMBRYO* OR SEA OR FISH* OR ‘SIDE EFFECT$’ OR CULTURE OR
FLOWER* OR CARBOHYDRATE$ OR INHIBITOR$ OR MOUSE OR MICE
OR CO-EXPRESSION OR POLYMORPHISM OR NON-CODING OR COPY OR
COPIES OR PARENT$ OR EXON*
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